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A Detailed derivations and proofs

Optimal quantities and prices. Firms choose quantities by maximizing expected profits

subject to demand. Using (1), we get:
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Updating of firm’s beliefs about expected demand. First note that firm i has a prior about

the demand shock given by aijkt ∼ N (θ̃ijkt−1, σ̃
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Prediction 1. Prediction 1 states that aijkt− εqijkt, has a larger impact on firms’ updating, the
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younger the firms are. Using (21), we immediately get:

∂∆εqijkt+1

∂
(
aijkt − εqijkt

) = gt > 0

Updating is larger for younger firms, as gt decreases with t.

Prediction 2: Impact of market uncertainty. Moreover, the updating process is also

affected by the level of market uncertainty σ2
ε . Formally:

∂2
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Updating decreases with uncertainty, as a signal is less informative when market uncertainty is

larger. As a consequence, market uncertainty dampens the speed of learning. In other words,

updating decreases less with age, the more uncertain the market. This can be seen noting that:

∂2
(

∆εqijkt+1

)
∂
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)
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σ2
ε

σ2
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which is larger (less negative) in more uncertain markets (with larger σ2
ε ).

Dynamics of prices and quantities. The model predicts expected growth rates of oppo-

site signs for quantities and prices. This result comes from (14) and (15). Taking the first

difference of these equations in expected terms, we directly get the expected growth rates. We

find:

E
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σk
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]
Given that firms that decrease in size will on average be more likely to exit, the expected growth

rate of quantities must be positive for survivors. Hence, the expected growth rate of prices for

these firms should be negative and smaller by a factor − 1
σk

. Quantitatively, this is very close to

what we find in table A.23.

Prediction 3. Prediction 3 states that the variance of growth rates within cohort decrease with

cohort age. The variance of these growth rates can be expressed as:
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First, aijkt+1 and aijkt being drawn from the same distribution, V [∆aijkt+1] = 2σ2
ε . Second,
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using (11), we get:
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Expanding this expression and using the fact that aijkt and aijkt+1 are independent and that
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Finally, plugging this term into (22) and (23) and after rearranging, we get the following ex-

pressions which are both strictly decreasing with t:
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B Data and descriptive evidence on firm dynamics

B.1 Dataset construction

We use data on values and quantities sold by French firms, by destination, HS6 product and

year, over the period 1994-2005. We focus on the subset of HS6 product categories that remain

stable in the HS classification over the period in order to be able to track firms over time on

specific markets.4 As we use the first two years to define entry, we concentrate on the years

1996-2005. Note that firms-products-destinations that already export at the beginning of the

period (in 1994 or 1995) are not considered, as we are interested in post-entry dynamics.

Because intra-EU and extra-EU flows are treated differently by the French Customs, we

harmonize the data in several ways. The declaration of extra-EU export flows is mandatory

when a transaction exceeds 1,000 euros or 1,000 kg. For shipments to EU countries, firms

have to report their detailed expeditions when their total exports to all EU countries exceed

a threshold over the year of 38,100 euros before 2001, 99,100 euros in 2001 and 100,000 euros

between 2002 and 2005. Firms below the reporting threshold are required to fill a simplified form

without the details on the product exported and the destination market. In order to harmonize

the data requirement over the different destinations, we drop all intra-EU export flows below

1,000 euros, as well as firms that report at least once under the simplified procedure (as for

these firms, we do not observe their flows in all markets). We also check that all our results are

unchanged when removing EU destinations from the sample.

B.2 Additional descriptive evidence

This section provides further details on the computation of the stylized facts presented in section

2 of the main text.

Contribution to aggregate sales growth. The literature has documented the essential con-

tribution of young firms to industry dynamics, either in terms of aggregate output, employment

or trade. Haltiwanger et al. (2013) show for instance that US start-ups display substantially

higher rates of job creation and destruction in their first ten years, and that these firms represent

a large share of total employment after a decade of existence. These patterns are also found for

other countries (see Criscuolo et al., 2014 for evidence on 18 OECD countries; Lawless (2014)

on Irish firms, Ayyagari et al., 2011 for developing countries). Similar facts characterize trade

dynamics: Eaton et al. (2008) and Bernard et al. (2009) show that exporters start small but

that, conditional on survival, they account for large shares of total export growth after a few

years.

Our exporter-level data exhibit comparable features. We compute the contribution of the

intensive margin (incumbent firm×product×destination) and the firm- and firm-market exten-

sive margins to the growth of total French exports on a year-on-year basis or over the entire

time frame of the sample (between 1996 and 2005). We use mid-point growth rates to account

for entries and exits Bricongne et al. (2012). Initial size relates to firms’ sales the first year of

entry on a specific market on which they export up to 2005.

4The frequent changes in the combined nomenclature (CN8) prevents us to use this further degree of disag-
gregation of the customs’ product classification.
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Over the 1996-2005 period, we find that, on average, new firm-destination-product triplets

represent only 12.3% of total export value after a year, but their share reaches 53.5% after a

decade (27.3% due to new markets served by incumbents and 26.2% by new firms exporting,

see Table A.1). The contribution of the extensive margin to aggregate exports is determined by

three components of firm dynamics: entry, survival and post entry growth on new markets. Since

new exporters typically do not survive more than a few years in export markets,5 firm selection

and growth are important drivers of aggregate trade growth over longer horizons, besides the

size at entry. Column (2) of Table A.1 shows that pure growth after entry accounts for around

40% of the end-of-period share of newly created firm-destination-product triplets. The objective

of our paper is precisely to understand how learning about demand can explain this post-entry

dynamics.

Table A.1: Shares in end-of-period French aggregate exports

(1) (2)
Average Overall

yoy 1996/2005 1996/2005

New exporters 2.4% 25.9%
Initial size - 16.4%
Growth since entry - 9.6%

New product-destination 9.9% 27.7%
Initial size - 16.7%
Growth since entry - 11.0%

Incumbent exporter-product-destination 87.7% 46.4%
Total 100% 100%

Note: Source: French Customs. Column (1) presents the average contribution to year-on-year growth rates, i.e.

the contribution of each subcomponent to the yearly growth rates, observed for each year of our sample, then

averaged across years. Column (2) reports the contributions of each subcomponent to the total growth of French

exports between 1996 and 2005. Initial entry measures firms’ sales the year of first entry on a specific market on

which they still export in 2005; and growth since entry measures the contribution of sales growth between the

first entry and 2005.

Firm-product-destination specific factors are a key component of sales’ growth. We

decompose the variance of sales growth, in a way similar in spirit to Eaton et al. (2011).6 We

first regress firm-market specific sales growth on a set of destination-product-time dummies.

The R2 of such a regression is 0.14: market-specific dynamics play a limited role. Adding

firm-product-time fixed effects increases the R2 to 0.46, suggesting that supply-side factors such

as productivity do a good job at explaining variations of firms’ sales over time. However, it

5For French exporters, the average survival rate at the firm-product-destination level is 32% between the first
and second year, and 9% over a five-year horizon.

6Eaton et al. (2011) show, using firm-destination data, that firm-specific effects explain well the probability of
serving a market (57%), but less so sales variations conditional on selling in a market (39%). Munch and Nguyen
(2014) find that the mean contribution of the firm component to unconditional sales variations is 49%. They
also show that the firm-specific effects are more important for firms already established in a product-destination
market. Lawless and Whelan (2014) find an adjusted pseudo-R2 of 45% on a sample of Irish exporters.
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appears clearly that sales growth remains largely driven by firm-market specific factors. Our

paper concentrates on this part of firm dynamics, with the objective of understanding the extent

to which it is consistent with firms learning about their demand.

Table A.2: Decomposition of the variance of sales

(1) (2) (3) (4)
Dependent var. Growth of exports Value of exports

Product-destination-time FE Yes Yes - -
Firm-product-time FE - Yes - -
Product-destination FE - - Yes -
Firm-product FE - - Yes -
Firm-product-destination FE - - - Yes

R2 0.14 0.46 0.57 0.80

Note: OLS estimations based on French customs data. Each column contains the R2 of a separate regression of the

dependent variable on a specific set of fixed effects.

Firm-market growth and its variance decline with age, conditional on size. Columns

(1), (4) and (5) of Table A.3 below shows the coefficients used to plot Figure 1 of the main

text. Column (2) shows that similar results for firm growth are obtained when including in the

estimations firm×product×year fixed effects. Specifications reported in columns (1)-(3) include

dummies by decile of firms size computed by HS4-product×destination, and HS2 sector and year

fixed effects. Firms size is defined as average firm×product×destination sales over t and t − 1

(Haltiwanger et al., 2013). Standard errors are clustered at the firm level. The exit probability

in column (3) is estimated using a linear probability model. Column (4) includes year fixed

effects and controls for average size, computed as the mean of average sales over t and t − 1

across firms by cohort. Standard errors are clustered at the market level.

Post-entry growth dynamics are heterogenous across survivors. Finally, Figures A.1

and A.2 show that the heterogenous growth dynamics of quantities that we discuss in the main

text also hold for the value of sales, and for different cohorts of firm-markets.
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Table A.3: Age, growth and volatility of sales and exit rates

(1) (2) (3) (4)
Dep. var. Growth Exit Variance

value (log) probability of growth
value (log)

Ageijkt = 1 0.296a

(0.009)
Ageijkt = 2 0.437a 0.398a 0.169a 0.389a

(0.015) (0.015) (0.009) (0.015)
Ageijkt = 3 0.132a 0.174a 0.093a 0.258a

(0.014) (0.015) (0.008) (0.015)
Ageijkt = 4 0.079a 0.105a 0.052a 0.189a

(0.014) (0.015) (0.008) (0.015)
Ageijkt = 5 0.055a 0.069a 0.025a 0.138a

(0.014) (0.015) (0.008) (0.015)
Ageijkt = 6 0.047a 0.049a 0.008 0.093a

(0.014) (0.015) (0.008) (0.015)
Ageijkt = 7 0.032b 0.031b -0.002 0.054a

(0.014) (0.015) (0.008) (0.015)
Ageijkt = 8 0.033b 0.031b -0.007 0.040b

(0.014) (0.015) (0.007) (0.016)
Ageijkt = 9 0.018 0.011 0.038b

(0.016) (0.017) (0.016)
Sizeijkt/t−1 - decile 1 -0.251a -0.156a 0.326a

(0.012) (0.021) (0.004)
Sizeijkt/t−1 - decile 2 -0.219a -0.142a 0.290a

(0.006) (0.008) (0.004)
Sizeijkt/t−1 - decile 3 -0.210a -0.193a 0.258a

(0.005) (0.006) (0.004)
Sizeijkt/t−1 - decile 4 -0.189a -0.175a 0.228a

(0.005) (0.005) (0.003)
Sizeijkt/t−1 - decile 5 -0.169a -0.156a 0.197a

(0.005) (0.005) (0.003)
Sizeijkt/t−1 - decile 6 -0.143a -0.130a 0.163a

(0.005) (0.004) (0.003)
Sizeijkt/t−1 - decile 7 -0.120a -0.105a 0.133a

(0.004) (0.004) (0.003)
Sizeijkt/t−1 - decile 8 -0.090a -0.077a 0.097a

(0.004) (0.004) (0.002)
Sizeijkt/t−1 - decile 9 -0.051a -0.039a 0.055a

(0.004) (0.004) (0.002)
Average Sizecjkt/t−1 0.022a

(0.001)

Observations 1,666,317 1,456,113 3,061,865 348,536
Year FE Yes Yes Yes Yes
Sector (HS2) FE Yes Yes Yes -
Firm-product-year FE - Yes - -

Robust standard errors clustered by firm (respectively destination-product in columns (4)) in parentheses. c significant at

10%; b significant at 5%; a significant at 1%. Size computed as average size in t and t+ 1; size bins by decile are computed

at the destination-product(HS4) level. The omitted age category is 10 years.
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Figure A.1: Sales dynamics over time for surviving firms
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Note: This figure plots statistics about market-specific firm sales values with respect to age. Values are normalized to 1

in age 2. The upper and lower limits of the boxes represent the first and last quartiles of the variable, with the median in

between.

Figure A.2: Quantity dynamics over time for surviving firms: robustness
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Note: This figure plots statistics about market-specific firm quantities with respect to age. Quantities are normalized to 1

in age 2. The upper and lower limits of the boxes represent the first and last quartiles of the variable, with the median in

between.

ix



C Elasticity of substitution estimates

Table A.4 reports the descriptive statistics on the elasticities of substitution estimated from equa-

tion 18, for the full estimation sample (upper panel) and across HS6 products (lower panel). We

first report the overall estimates, then the statistics obtained when products with insignificant

β coefficients (at the 5% level) are removed from the sample, and finally the statistics obtained

when products with σk < 1 are excluded. As can be seen from the upper panel, insignificant

coefficients only represent 1.6% of the observations in the final sample, while dropping theory

inconsistent elasticities (lower than 1) further eliminates only 0.1% of the observations. This

clearly show that, whenever we can precisely estimate these elasticities, we get plausible coeffi-

cients.

Across products, our estimates yield a mean (resp. median) σk of 7.17 (resp. 5.51) after

dropping insignificant or theory-inconsistent ones (lower panel). The median is largely unaf-

fected by our cleaning rules. Except in the case in which insignificant estimates are kept, the

distribution of σk does not contain extreme value: the 99% is equal to 28.7. The last three rows

report σk for different categories of products according to the Rauch (1999)’s liberal classifica-

tion. As expected, differentiated goods exhibit a mean (resp. median) of 6.2 (resp. 5.2), lower

than referenced priced goods (9.1 and 7.2 respectively) and homogenous goods (11.1 and 9.0

resp.). Those means are statistically different at the 1% level, with t-stat of -12.4 (differentiated

vs. referenced), -13.3 (differentiated vs. homogenous), and -3.1 (referenced vs. homogenous).

Table A.4: Statistics on elasticities of substitution

Obs. Mean S.D. 1% 25% Median 75% 99%

Full sample

σk, all estimates 1883748 7.30 60.42 2.21 3.58 5.11 6.70 33.06
σk, if β significant 1854359 6.20 4.79 2.24 3.57 5.09 6.59 26.16
σk, if β significant and σk > 1 1854141 6.20 4.78 2.24 3.57 5.09 6.59 26.16

Across HS6 products

σk, all estimates 3542 13.91 221.62 -69.55 3.82 5.83 10.27 116.10
σk, if β significant 2780 7.10 5.55 1.68 3.86 5.49 8.41 28.73
σk, if β significant and σk > 1 2767 7.17 5.47 1.89 3.88 5.51 8.42 28.73
σk, if > 1, differentiated goods 1778 6.24 4.21 2.00 3.77 5.17 7.20 21.82
σk, if > 1, referenced priced goods 670 9.09 6.78 1.80 4.46 7.24 11.61 32.98
σk, if > 1, homogenous goods 159 11.14 8.71 1.63 5.23 8.97 15.07 50.82

Source: Authors computations from French Customs data. Elasticities of substitution estimated from equation (17). σk,

if significant β means that we keep only the estimate when β estimated from equation (17) is statistically different from

zero at the 5% level. σk, if > 1 means that we further drop the observation if σk > 1. The classification of goods into

differentiated, referenced priced and homogeneous comes from Rauch (1999).
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D Main results – Graphical representation

The figures below depicts the coefficients of 2, column (4). Equation (18) predicts that these

coefficient should follow the following shape: gt = 1
σ2
ε/σ

2
jk0+t

with gt measuring the speed of

learning. To determine whether our set of estimated coefficients significantly differ from this

shape, in Figure we have taken year 2 (the first coefficient) as a benchmark; from this coefficient

we can infer the value of σ2
ε/σ

2
jk0 ≈ 12. Assuming the coefficient of year 2 is indeed correct, the

shape of our coefficients is quite similar to the one implied by our functional form assumption.

We can go further and test this restriction: does our model perform significantly better than

a model in which we would constrain the coefficients (from year 3 onwards) to follow the shape

of gt? When we test these restrictions, they are rejected at the 5% level: the shape implied

by our coefficient is different from the one implied by the normality assumption (the p-value

associated with the hypothesis that the models are the same is 0.02). However, as is apparent

in Figure R3.1 below, this is mostly due to a difference in the coefficients after age 5. In fact,

when we consider all coefficients but the one of year 6, the restrictions are no longer rejected

(the p-value of 0.17). When we concentrate on the first four years (for which we have more

observations and therefore more precise estimates), the p-value of the F-test of the restrictions

is as high as 0.66.

Figure A.3: Functional form assumption
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Note: This figure plot the coefficient and 95% confidence intervals from Table 2, column (4), and the coefficient implied by our functional

form assumption gt = 1/(σ2
ε/σ

2
jk0 + t). At age 2 we assume that the coefficient is correctly estimated and infer the rest of the theory-based

coefficient from the expression of gt.
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E Belief updating and uncertainty

To illustrate the impact of uncertainty on the updating process and how it evolves with age,

we split our sample into markets with low (below the first quartile of uncertainty) and high

(above the third quartile) uncertainty in Table A.5 and Figure A.4. We still find evidence for

the updating process on both sub-samples but the average level of belief updating following a

demand shock is larger on less uncertain markets (0.171 versus 0.035 for firms of age two). As

expected from prediction 2, the profile of learning is also flatter on more uncertain markets.

Figure A.4: Uncertainty and belief updating
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The figure plots the coefficients of regressions similar to Table 2, column (4), ran on two different sub-samples defined according to the market
level of uncertainty (below the first quartile and above the third quartile). Uncertainty is computed as the standard deviation of the demand
shocks aijkt, computed by market. Grey areas represent 90% confidence bands.

xii



Table A.5: Prediction 1: the role of uncertainty (subsamples)

(1) (2)
Dep. var. ∆εqijk,t+1

Uncertainty High Low

(aijkt − εqijkt) × Ageijkt = 2 0.035a 0.171a

(0.001) (0.002)

× Ageijkt = 3 0.032a 0.153a

(0.001) (0.003)

× Ageijkt = 4 0.028a 0.152a

(0.001) (0.004)

× Ageijkt = 5 0.028a 0.150a

(0.002) (0.004)

× Ageijkt = 6 0.031a 0.142a

(0.002) (0.005)

× Ageijkt = 7 0.026a 0.131a

(0.002) (0.006)

× Ageijkt = 8 0.027a 0.136a

(0.003) (0.009)

× Ageijkt = 9 0.023a 0.131a

(0.004) (0.010)

× Ageijkt = 10 0.021a 0.128a

(0.006) (0.013)

Observations 454040 438324

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%. Age dummies included

alone but coefficients not reported. aijkt is our estimate of the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future

demand from equation (14). Ageijkt is the number of years since the last entry of the firm on market jk (reset to zero after one year of exit).

Uncertainty is the standard deviation of aijkt, computed by market. High and low mean above the third quartile and below the first quartile

of the uncertainty variable.
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F Extensions of the model

We consider in this section alternative versions of the model and discuss their implications for

our identification strategy.

F.1 Firms set price first, monopolistic competition

Let us first consider the opposite of our baseline assumption: prices are set first, before demand

shocks are realized. Once the demand shock is observed, firms then choose quantities. The

maximization problem becomes:

max
p

∫
πijktdGt−1(aijkt) s.t. qijkt = eaijktp−σkijkt

µkYjt

P 1−σk
jkt

max
p
p1−σk
ijkt

µkYjt

P 1−σk
jkt

Et−1 [eaijkt ]− wit
ϕikt

Et−1 [eaijkt ] p−σkijkt

µkYjt

P 1−σk
jkt

− Fijk

From the FOC and the constraint we get:

p∗ijkt =
σk

σk − 1

wit
ϕikt

q∗ijkt = eaijkt
(

σk
σk − 1

wit
ϕikt

)−σk µkYjt
P 1−σk
jkt

With constant price elasticity, firms choose prices as constant mark-ups over marginal costs:

prices do not depend on sales, but solely on supply side characteristics. Quantities then adjust

to the demand level. Therefore, if prices are determined before observing the demand shocks,

while quantities can fully adjust to it, neither prices nor quantities depend on firm beliefs. We

would get:

εqijkt = lnZqijkt = aijkt

εpijkt = lnZpijkt = 0

Regressing εpijkt on εqijkt should generate insignificant β̂ coefficients and the absolute value of

εqijkt should not decrease with age.

F.2 Firms set price first, oligopolistic competition

Second, we consider the case of an oligopolistic market structure with Bertrand competition

(so still price first), to allow for variable markups. Formally, we assume that consumers in

country j maximize utility derived from the consumption of goods from K sectors. Each sector
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is composed of a small enough set of differentiated varieties of product k:

Uj = E
+∞∑
t=0

βt ln (Cjt) , with Cjt =
K∏
k=0

Cµkjkt

and Cjkt =

∑
Ωkt

(eaijkt)
1
σk qijkt(ω)

σk−1

σk dω


σk

(σk−1)

with Ωkt the (small enough) set of varieties of product k available at time t. We assume that

firms take income Yjt as constant, i.e. we assume that K is large enough.

The upper tier utility maximization implies Cjkt =
µkYjt
Pjkt

. It follows the demand in market

j at time t for a variety of product k:

qijkt = eaijktp−σkijkt

µkYjt

P 1−σk
jkt

= Cjkte
aijkt

p−σkijkt

P−σkjkt

with the price index of sector k in country j defined as:

Pjkt =

∑
Ωkt

eaijktp1−σk
ijkt di

 1
1−σk

The firm maximization program writes:

max
p

∫
πijktdGt−1(aijkt) s.t. qijkt = eaijktp−σkijkt

µkYjt

P 1−σk
jkt

It follows:

p∗ijkt =
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

wit
ϕikt

q∗ijkt = eaijkt
(

Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

wit
ϕikt

)−σk µkYjt
P 1−σk
jkt

with

Et−1 [ε(sijkt)] = σk − (σk − 1)Et−1 [sijkt]

where Et−1 [sijkt] is the expected market share at the beginning of period t. The residuals from

the estimation in logs with fixed effects are:

εqijkt = aijkt − σk ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
εpijkt = ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
As the demand shock now appears in the residual quantities, we regress εqijkt on εpijkt:
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aijkt − σk ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
= β

(
ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

))
+ λijk + vijkt

We obtain:

β̂ = −σk and v̂ijkt = εijkt

and

λ̂ijk + v̂ijkt = aijkt

To test this alternative specification, we look at the dynamics of prices, that reflect the evolution

of firms beliefs:

∆εpijkt+1 = ∆ ln

(
Et [ε(sijkt)]

Et [ε(sijkt)]− 1

)
As

∂(Et−1[ε(sijkt)])
∂(Et−1[sijkt])

< 0, a positive shock (i.e. generating a positive updating) implies a

decrease in the expected price elasticity and an increase in markup. In Table A.6, we assess the

empirical relevance of this alternative model. We do not find evidence of a positive relationship

between prices and demand shocks. Overall, our data are therefore not consistent with the

assumption of firms choosing their price first.
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Table A.6: Prediction 1: demand shocks and beliefs updating (assuming Bertrand)

(1) (2) (3) (4)
Dep. var. ∆εpijkt+1

aijkt -0.004a -0.005a -0.005a

(0.001) (0.001) (0.001)

× Ageijkt 0.000 0.000
(0.000) (0.000)

× Ageijkt = 2 -0.003a

(0.001)

× Ageijkt = 3 -0.001a

(0.000)

× Ageijkt = 4 -0.001a

(0.000)

× Ageijkt = 5 -0.000
(0.000)

× Ageijkt = 6 -0.001a

(0.000)

× Ageijkt = 7 -0.001a

(0.000)

× Ageijkt = 8 -0.000
(0.000)

× Ageijkt = 9 -0.000
(0.000)

× Ageijkt = 10 0.001
(0.000)

Ageijkt 0.001a 0.001a 0.001a

(0.000) (0.000) (0.000)

Observations 1883748 1883748 1883748 1883748

Robust standard errors clustered by firm in parentheses (bootstrapped in column (3)). c significant at 10%; b significant at 5%; a significant

at 1%. Age dummies included alone in columns (4) but coefficients not reported. Shocks aijkt are computed assuming Bertrand competition,

i.e. by regressing ε
q
ijkt

on ε
p
ijkt

instead of the opposite. See text for more details. Ageijkt is the number of years since the last entry of the

firm on market jk (reset to zero after one year of exit).
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F.3 Partial quantity adjustment

Here, we maintain our assumption that quantities are set first, but allow firms to observe part of

the demand shock before taking their quantity decision. Prices then fully adjust once the other

part of the demand shock is observed.

Suppose that the demand shock aijkt can be decomposed into 2 components: aijkt = a1
ijkt +

a2
ijkt, with a1

ijkt ∼ N
(
a1
ijk, ςσ

2
ε

)
, a2

ijkt ∼ N
(
a2
ijk, (1− ς)σ2

ε

)
and a1

ijk + a2
ijk = aijk. Firms can

observe a1
ijkt before taking their quantity decision. a2

ijkt is then realized and firms fully adjust

their prices. For simplicity, we assume that a1
ijkt does not bring additional information, i.e.

Cov(a1
ijkt, a

2
ijkt) = 0.

a1
ijk and ς capture the relative importance of the first (observed) shock and therefore the

importance of the learning process for firms: if a1
ijkt captures the entire demand shock (aijk = a1

ijk

and ς = 1), there is nothing to learn about. Beliefs are only related to a2
ijkt, the part of the

demand shock which is not observed at the time of the quantity decision. The distribution of

beliefs is now described by Gt−1(a2
ijkt).

After having observed a1
ijkt, firms choose quantities by maximizing expected profits subject

to demand. We get:

max
q

∫
πijktdGt−1(a2

ijkt) = max
q
q

1− 1
σk

ijkt

(
µkYjt

P 1−σk
jkt

) 1
σk

e
a1
ijkt
σk Et−1

[
e
a2
ijkt
σk

]
− wit
ϕikt

qijkt − Fijk.

The constraint can now be written pijkt =

(
µkYjte

a1
ijkte

a2
ijkt

qijktP
1−σk
jkt

) 1
σk

. From the FOC and the con-

straint we get:

p∗ijkt =

(
σk

σk − 1

wit
ϕikt

) e
a2
ijkt
σk

Et−1

[
e
a2
ijkt
σk

]


q∗ijkt =

(
σk

σk − 1

wit
ϕikt

)−σk ( µkYjt

P 1−σk
jkt

)
ea

1
ijktEt−1

[
e
a2
ijkt
σk

]σk
.

As before, quantities depend on firms’ beliefs while prices are still a constant markup over

marginal cost in expected terms. We get:

εqijkt = lnZqijkt = a1
ijkt + σk lnEt−1

[
e
a2
ijkt
σk

]

εpijkt = lnZpijkt =
1

σk
a2
ijkt − lnEt−1

[
e
a2
ijkt
σk

]
.

Note that if a1
ijk = aijk and ς = 1, all the demand shock is observed and εqijkt captures the

demand shock only while εpijkt does not depend neither on the demand shock, nor on firm beliefs

(which are irrelevant in that case). This case is equivalent to the one where prices are set first.

If on the other hand a1
ijk = ς = 0, we are back to our baseline assumption of fixed quantities.
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Importantly, all our theoretical predictions still hold in the intermediate case. In particular,

equation (11) still describes the evolution of beliefs, which are now related to the distribution

of a2
ijkt.

Identification. If quantities can partly adjust, εqijkt captures both the firm beliefs and part of

the demand shock, i.e. our measure of beliefs becomes noisy. This is innocuous when looking

at the dynamics of εqijkt (see 6.1) or when looking at the relationship between the variance

of growth rates and age cohorts (see 6.2), but it has implications for the identification of the

demand shocks vijkt. Regressing εpijkt on εqijkt gives:(
1

σk
a2
ijkt − lnEt−1

[
e
a2
ijkt
σk

])
= β

(
a1
ijkt + σk lnEt−1

[
e
a2
ijkt
σk

])
+ λijk + vijkt.

It follows:

β̂ = − 1

σk
ΛP with ΛP =

V

 ˜
σk lnEt−1

[
e
a2
ijkt
σk

]
V

 ˜
σk lnEt−1

[
e
a2
ijkt
σk

]+ V
(
ã1
ijkt

)
where variables with the sign˜ are demeaned in the ijk dimension. We get 0 < ΛP < 1: β̂ is

underestimated due to the attenuation bias introduced by the noisy measure of firms’ beliefs.

Hence, the estimated shock λ̂ijk+ v̂ijkt may be biased, but the direction of this bias is unclear

as we would like now to isolate a2
ijkt and not aijkt = a1

ijkt + a2
ijkt. Indeed, firms now form beliefs

about the part of the demand shock which is not observed at the time of the quantity decision.

v̂ijkt may thus be larger or smaller than a2
ijkt.

Suppose for instance that ΛP = 1/2. This implies that V

 ˜
σk lnEt−1

[
e
a2
ijkt
σk

] = V
(
ã1
ijkt

)
.

In this case our estimated demand shock would be:

λ̂ijk + v̂ijkt =
1

σk
a2
ijkt + 2σk

(
a1
ijkt − σk lnEt−1

[
e
a2
ijkt
σk

])

The direction of the bias depends on, among σk lnEt−1

[
e
a2
ijkt
σk

]
and a1

ijkt, which one is the most

important component of εqijkt.

Equation under test. We obtain:

∆εqijkt+1 = σk∆ ln Et

[
e
a2
ijkt+1
σk

]
+ ∆a1

ijkt+1

It is worth noting that ∆εqijkt still fully captures the updating process, as ∆a1
ijkt+1 = 0 in

expected terms. It is now about the true value of a2
ijk. We get: ∆θ̃t = gt

(
a2
ijkt − θ̃t−1

)
, and
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thus ∆ lnEt

[
e
a2
ijkt+1
σk

]
= 1

σk

(
∆θ̃t +

σ̃2
t−σ̃2

t−1

2σk

)
.

It follows:

∆εqijkt+1 = gt

(
a2
ijkt − θ̃t−1 −

σ̃2
t−1 − σ̃2

t

gt2σk

)
+ ∆a1

ijkt+1

Further,

θ̃ijkt−1 = εqijkt −
σ̃2
t−1 + σ2

ε

2σk
− a1

ijkt

Hence:

∆εqijkt+1 = gt

(
a2
ijkt − ε

q
ijkt

)
+ gt

(
σ2
ε

2σk
+ a1

ijkt

)
+ ∆a1

ijkt+1

The possibility of some partial quantity adjustment may just generate some extra uncon-

ditional growth at the firm-market level (see the second term), as ∆a1
ijkt+1 = 0 in expected

terms. So, beyond the fact that a2
ijkt may be biased upwards or downwards, our strategy is left

unaffected.

How this potential bias may affect our results on beliefs updating (prediction 1)? Consider

our baseline specification, equation (19). There are two distinct issues here. First, α̂1 – the

average extent of belief updating – might be upward or downward biased, depending on the

direction of the bias of our estimated demand shocks. Second, if this bias depends on firm-

market age, this may affect how α̂1 evolves with age, which is key for our findings.

As discussed in the main text, a simple way to gauge the importance of this issue is to focus on

sectors or destinations for which quantities are more likely to be rigid (those for which λ̂ijk+ v̂ijkt

is more likely to be correctly estimated) and to compare the results with our baseline estimates

of Table 2. We expect less quantity adjustment for complex goods (in which many different

relationship-specific inputs are used in the production process) and in destinations characterized

by longer time-to-ship. In Table A.7, we restrict our sample to sectors or destinations which are

above the sample median in terms of time-to-ship or input complexity. Data on sector-specific

complexity comes from Nunn (2007), and data on time-to-ship between France’s main port (Le

Havre) and each of the destinations’ main port from Berman et al. (2013).

Results in Table A.7 show that the updating of the firms’ beliefs following a demand shock is

quantitatively close to our baseline estimates (columns (1) and (4)), which suggests that the bias

of our estimated demand shocks, if any, is limited. Further, the coefficient on the interaction

term between demand shocks and age (columns (2)-(3) and (5)-(6)), is also similar our baseline

estimates. The coefficient on the interaction term between demand shocks and age is slightly

lower than our baseline in the case of complex goods (col. (5) of Table A.7). In column (6),

however, we see that this result is only driven by effect of the last age category, 10 years of

experience, which is itself quite imprecisely estimated.

Altogether, these results suggest that our assumption of fixed quantities should not be re-

jected in light of our data.
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Table A.7: Prediction 1: robustness (fixed quantities)

(1) (2) (3) (4) (5) (6)
Dep. var. ∆εqijk,t+1 ∆εqijk,t+1

Sample Long time-to-ship Complex goods

aijkt − εqijkt 0.072a 0.081a 0.077a 0.084a

(0.002) (0.003) (0.002) (0.003)

× Ageijkt -0.003b -0.002a

(0.001) (0.001)

× Ageijkt = 2 0.075a 0.080a

(0.002) (0.002)

× Ageijkt = 3 0.071a 0.078a

(0.003) (0.002)

× Ageijkt = 4 0.068a 0.075a

(0.004) (0.003)

× Ageijkt = 5 0.062a 0.070a

(0.005) (0.004)

× Ageijkt = 6 0.069a 0.074a

(0.005) (0.004)

× Ageijkt = 7 0.068a 0.071a

(0.008) (0.004)

× Ageijkt = 8 0.062a 0.072a

(0.010) (0.005)

× Ageijkt = 9 0.063a 0.065a

(0.013) (0.008)

× Ageijkt = 10 0.040b 0.079a

(0.018) (0.012)

Ageijkt -0.029a -0.029a -0.031a -0.031a

(0.001) (0.001) (0.001) (0.001)

Observations 358418 358418 358418 800015 800015 800015

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%. aijkt

is our estimate of the demand shock from equation (17); εqijkt is the belief of the firm about future demand from equation

(14). Ageijkt is the number of years since the last entry of the firm on market jk (reset to zero after one year of exit).

Age dummies included alone in columns (3) and (6) but coefficients not reported. Complex goods means in the above the

sample median of the variable, and large time-to-ship above the median for extra-EU observations. Data on sector-specific

complexity comes from Nunn (2007), and data on time-to-ship between France’s main port (Le Havre) and each of the

destinations’ main port from Berman et al. (2013).
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F.4 Oligopolistic Competition - Cournot

We investigate here the possibility that firms markups are variable. To do so, we consider

the same model as before, but assume that competition is oligopolistic within sectors and not

monopolistic. Formally, we assume that consumers in country j maximize utility derived from

the consumption of goods from K sectors. Each sector is composed of a small enough set of

differentiated varieties of product k:

Uj = E
+∞∑
t=0

βt ln (Cjt) , with Cjt =
K∏
k=0

Cµkjkt

and Cjkt =

∑
Ωkt

(eaijkt)
1
σk qijkt(ω)

σk−1

σk dω


σk

(σk−1)

with ρ the discount factor. Ωkt the (small enough) set of varieties of product k available at time

t, and
∑K µk = 1. We assume that firms take income Yjt as constant, i.e. we assume that K is

large enough.

The upper tier utility maximization implies Cjkt =
µkYjt
Pjkt

. It follows the demand in market

j at time t for a variety of product k:

qijkt = eaijktp−σkijkt

µkYjt

P 1−σk
jkt

= Cjkte
aijkt

p−σkijkt

P−σkjkt

with the price index of sector k in country j defined as:

Pjkt =

∑
Ωkt

eaijktp1−σk
ijkt di

 1
1−σk

Equilibrium. Firms maximize profits, given the demand they face. They maximize:

max
q

∫
πijktdGt−1(aijkt) s.t. pijkt =

(
Cjkte

aijkt

qijkt

) 1
σk µkYjt

Cjkt

We get:

∂
∫
πijktdGt−1(aijkt)

∂qijkt
=

(
(Cjkt)

1
σk q

− 1
σ

ijkt

µkYjt
Cjkt

Et−1

[
e
aijkt
σ

])(
1− 1

σk

)
(1− Et−1 [sijkt])−

wit
ϕikt

where Et−1 [sijkt] is the expected market share at the beginning of period t:

Et−1 [sijkt] =
Et−1 [qijktpijkt]

CjktPjkt
=

Et−1

[
e
aijkt
σ

]
Et−1

[
p1−σk
ijkt

]
P 1−σk
jkt

It follows:
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q∗ijkt =

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

wit
ϕikt

)−σk µkYjt
P 1−σk
jkt

(
Et−1

[
e
aijkt
σk

])σk

p∗ijkt =
e
aijkt
σk

Et−1

[
e
aijkt
σk

] ( Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

wit
ϕikt

)

with

Et−1 [ε(sijkt)] =
1

1
σk

+
(

1− 1
σk

)
Et−1 [sijkt]

Identification. Purged quantities and prices:

εqijkt = σk

(
ln Et−1

[
e
aijkt
σk

]
− ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

))
εpijkt =

aijkt
σk
−
(

ln Et−1

[
e
aijkt
σk

]
− ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

))
We regress εpijkt on εqijkt:

aijkt
σk
−
(

ln Et−1

[
e
aijkt
σk

]
− ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

))

= β

(
σk

(
ln Et−1

[
e
aijkt
σk

]
− ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)))
+ λijk + vijkt

We get:

β̂ = − 1

σk
and v̂ijkt =

1

σk
εijkt

And

λ̂ijk + v̂ijkt =
aijkt
σk

Put differently, our strategy to identify demand signals is still valid if firms markups are

variable. This is because firms’ markups affect purged prices and quantities in the same way as

beliefs do.

Equation under test. We obtain:

∆εqijkt+1 = σk

[
∆ ln Et

[
e
aijkt+1
σk

]
−∆ ln

(
Et [ε(sijkt)]

Et [ε(sijkt)]− 1

)]
∆εqijkt does not only capture the updating process, but is also impacted by changes in

expected mark-up.

The updating process itself does not change however, we still get ∆θ̃t = gt

(
aijkt − θ̃t−1

)
,

and ∆ lnEt

[
e
aijkt+1
σk

]
= 1

σk

(
∆θ̃t +

σ̃2
t−σ̃2

t−1

2σk

)
.
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It follows

∆εqijkt+1 = gt

((
aijkt − θ̃t−1

)
−
σ̃2
t−1 − σ̃2

t

gt2σk

)
− σk∆ ln

(
Et [ε(sijkt)]

Et [ε(sijkt)]− 1

)

Further,

θ̃ijkt−1 = εqijkt −
σ̃2
t−1 + σ2

ε

2σk
+ σk ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
And we obtain:

∆εqijkt+1 = gt

(
aijkt − εqijkt

)
+gt

σ2
ε

2σk
−σk

(
gt ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
+ ∆ ln

(
Et [ε(sijkt)]

Et [ε(sijkt)]− 1

))
With variable mark-ups, our main equation includes two new terms.

The first term is the level of the expected mark-ups, ln

(
Et−1[ε(sijkt)]

Et−1[ε(sijkt)]−1

)
. This term comes

from the fact that the expected mark-up also affects our measure of beliefs, εqijkt. As it is a

component of εqijkt and therefore of
(
aijkt − εqijkt

)
, we need to control for it to avoid a standard

omitted variable bias. Hence, we need to control for εqijkt in the estimation.

The second term captures the change in expected mark-ups ∆ ln

(
Et[ε(sijkt)]
Et[ε(sijkt)]−1

)
, and it

depends on the updating process through the change in the expected market share. It follows

that our measure of beliefs updating is now underestimated as the quantity reaction to a demand

shock is dampened by the mark-up reaction: when firms update positively, they tend to increase

their quantities but also their prices, which dampens their overall quantity reaction. Under very

weak conditions however, the quantity reaction to beliefs updating is still positive (see the proof

below). It means that in the case of variable mark-ups, what we interpret quantitatively as

beliefs updating becomes the overall reaction of purged quantities εqijkt to belief updating. εqijkt
becomes an increasing function of firm’s beliefs, but cannot be seen as identical to firm’s beliefs.

Thus, our results still provide evidence for the updating process, but in a qualitative sense.

Importantly, the relation that goes from beliefs to expected markups (through the expected

market share) is not log linear. Put differently, two firms of different sizes, but updating in the

exact same way, will not have the same mark-up reaction to this updating. This means that we

need again to control for firm size, to be able to compare the beliefs updating of firms with the

same initial market share.

Proof. Quantity increase after a positive updating:
∂(∆εqijkt)

∂

(
∆ ln Et

[
e

aijkt+1
σk

]) > 0

First, we express εqijkt in terms of beliefs and market share. We have:

εqijkt = σk

(
ln Et−1

[
e
aijkt
σk

]
− ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

))
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Note that:

ln

(
Et−1 [ε(sijkt)]

Et−1 [ε(sijkt)]− 1

)
= − ln

(
1− 1

σk

)
− ln (1− Et−1 [sijkt])

As we have purged εqijkt of its ikt components, we get:

εqijkt = σk

(
ln Et−1

[
e
aijkt
σk

]
+ ln (1− Et−1 [sijkt])

)
Second, let’s find the relation between beliefs and market share. Market share is given by:

Et−1 [sijkt] =

Et−1

[
e
aijkt
σk

]
Et−1

[
p1−σk
ijkt

]
P 1−σk
jkt

And expected price:

Et−1

[
p1−σk
ijkt

]
= Et−1

[(
wit
ϕikt

σk
σk − 1

)1−σk
(1− Et−1 [sijkt])

σk−1

]

Given that we work with purged prices and quantities, we obtain:

Et−1 [sijkt] = Et−1

[
e
aijkt
σk

]
Et−1

[
p1−σk
ijkt

]
Et−1

[
p1−σk
ijkt

]
= Et−1

[
(1− Et−1 [sijkt])

σk−1
]

It follows that Et−1

[
e
aijkt
σ

]
=

Et−1[sijkt]
(1−Et−1[sijkt])

σ−1 and we obtain:

ln Et−1

[
e
aijkt
σk

]
= lnEt−1 [sijkt]− (σk − 1) ln (1− Et−1 [sijkt])

As the expected market share is an increasing function of the beliefs, we only need to show

that ∆εqijkt+1 is increasing in firm’s expected market share.

Third, we can now express εqijkt as a function of the expected market share only:

εqijkt = σk (lnEt−1 [sijkt]− (σk − 2) ln (1− Et−1 [sijkt]))

We get:
∂εqijkt

∂Et−1 [sijkt]
= σk

(
1

Et−1 [sijkt]
+ (σk − 2)

1

1− Et−1 [sijkt]

)
It follows that εqijkt is an increasing function of the expected market share if:

∂εqijkt
∂Et−1 [sijkt]

> 0⇔ 1 + (σk − 3)Et−1 [sijkt] > 0

This condition is necessarily fulfilled if σk > 2. If σk < 2, we can concentrate on the limiting

case σk = 1. Et−1 [sijkt] < 1/2 provides another sufficient condition for the above condition to
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hold.
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F.5 Product-destination specific productivity

Here, we introduce a product-destination component to productivity. Specifically, we assume

that the unit cost of producing good k for market j at time t is:

wit
ϕikt

1

ϕijkt

with ϕijkt > 0 and where 1
ϕijkt

can be understood as a cost wedge for market jk with respect

to the average cost of this good. Further, it could also capture differences in product quality

for the same good across markets. Finally, it could capture differences in transportation costs

between French competitors in market jk at time t.

Equilibrium. The optimal price and quantities are given by:

q∗ijkt =

(
σk

σk − 1

wit
ϕiktϕijkt

)−σk ( µkYjt

P 1−σk
jkt

)(
Et−1

[
e
aijkt
σk

])σk

p∗ijkt =

(
σk

σk − 1

wit
ϕiktϕijkt

) e
aijkt
σk

Et−1

[
e
aijkt
σk

]


Identification. Purged quantities and prices are:

εqijkt = σk

(
ln Et−1

[
e
aijkt
σk

]
+ ln (ϕijkt)

)
εpijkt =

1

σk
aijkt −

(
ln Et−1

[
e
aijkt
σk

]
+ lnϕijkt

)
We regress εpijkt on εqijkt:

1

σk
aijkt −

(
ln Et−1

[
e
aijkt
σk

]
+ lnϕijkt

)
= β

(
σk

(
ln Et−1

[
e
aijkt
σk

]
+ ln (ϕijkt)

))
+ λijk + vijkt

We obtain:

β̂ = − 1

σk
and v̂ijkt =

1

σk
εijkt

And

λ̂ijk + v̂ijkt =
1

σk
aijkt

Our identification strategy is still valid if productivity incorporates a ijk component.

Equation under test. We now get:

∆εqijkt+1 = σk

[
∆ ln Et

[
e
aijkt+1
σk

]
+ ∆ ln (ϕijkt+1)

]
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And ∆εqijkt+1 cannot be seen as updating only. The updating process itself does not change, we

still get ∆θ̃t = gt

(
aijkt − θ̃t−1

)
, and thus ∆ lnEt

[
e
aijkt+1
σk

]
= 1

σk

(
∆θ̃t +

σ̃2
t−σ̃2

t−1

2σk

)
.

It follows

∆εqijkt+1 = gt

(
aijkt − θ̃t−1 −

σ̃2
t−1 − σ̃2

t

gt2σk

)
+ σk∆ ln (ϕijkt+1)

Further,

θ̃ijkt−1 = εqijkt −
σ̃2
t−1 + σ2

ε

2σk
− σk ln (ϕijkt)

Hence:

∆εqijkt+1 = gt

(
aijkt − εqijkt

)
+ gt

σ2
ε

2σk
+ σk [gt ln (ϕijkt) + ∆ ln (ϕijkt+1)]

As for the case of variable mark-ups, our equation includes two new terms.

This term comes from the fact that ln (ϕijkt) affects our measure of beliefs, εqijkt. As it is

a component of εqijkt and thus of
(
aijkt − εqijkt

)
, we need to control for firm size to avoid a

standard omitted variable bias.

The presence of the second term, ∆ ln (ϕijkt+1) comes from the fact that ∆εqijkt+1 also reflects

the dynamics of productivity.

If ∆ ln (ϕijkt+1) is uncorrelated with the updating process, the interpretation of our results

should be unaffected. If however ∆ ln (ϕijkt+1) is positively affected by the updating process,

because a positive updating would lead firms to invest to improve ϕijkt, then our measure of

updating becomes a measure of the overall impact of the updating process on ∆εqijkt+1: it would

not only capture the updating process itself but also how the quantity response is magnified

by a change in productivity. εqijkt would become an increasing function of firm’s beliefs, and

our evidence of the updating process would become qualitative as we would not identify firms’

beliefs, but only a function of it. As this productivity response could be size dependent, we need

again to control for firm size. The decline of the overall reaction of ∆εqijkt+1 to demand shocks

over time, conditional on size, however still provides evidence for an updating process.

Finally, note that ∆εqijkt+1 will also capture the dynamics of ln (ϕijkt) that is uncorrelated

with the updating process. In turn, it could introduce some noise into our measure of the

updating process. But if this dynamics was important, it should be observed in the dynamics

of εqijkt and εpijkt. Results in section 6.1 show however that, when we concentrate on the within

firm-market dynamics of these elements (Figure 2.c), no important pattern emerge: εqijkt and

εpijkt are roughly constant over time, which suggests that there should not be any important

dynamics in ln (ϕijkt), beyond the one possibly driven by the updating process.
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F.6 Controlling for size – robustness

This section presents additional results controlling for size when testing prediction 1. Our main

results appear in Table A.8. Columns (1) and (2) are similar to our baseline regressions (Table

2, columns (2) and (4)), except that jkt fixed effects are introduced in the estimation of the

price residuals εpijkt, as predicted by models with variable markups. The average level of belief

updating is slightly larger than in our baseline estimates, but the effect of age is similar. In

columns (3) to (6) we additionally control for firm size, as measured by the value sold by firm

i on market jk during year t− 1 divided by the total value exported by French firms in market

jk during year t − 1. Size is introduced either linearly in columns (3) and (4) or through bins

computed using market-specific deciles in columns (5) and (6). Our coefficients of interest are

extremely stable across specifications.7

Table A.9 shows that our results are not sensitive to the measurement of firm size. In columns

(1)-(4), we measure firm size as market shares in quantity and introduce it either linearly or

through bins as in Table A.8. Alternatively, in columns (5)-(8) firm size is measured as the log

of the value exported by firm i to market jk in year t− 1.

Finally, Table A.10 includes an interaction term between size and aijkt − εqijk to account for

the fact that age and size are correlated. We report results using as a measure of firm size either

the market share in value (columns (1)-(4)) and quantity (columns (5)-(8)) introduced linearly

(odd columns) or through bins (even columns).

In all cases, the coefficients on aijkt − εqijk and its interaction with age remain close to our

benchmark results in Table A.8.

7Note that the positive coefficient on age in column (5) cannot be directly interpreted as this estimation also
includes a full set of interaction terms between age and size.
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Table A.8: Prediction 1: controlling for size

(1) (2) (3) (4) (5) (6)
Dep. var. ∆εqijk,t+1

Robustness Controlling for FEjkt Controlling for FEjkt
in prices in prices and size

Size Linear Bins

aijkt − εqijkt 0.103a 0.103a 0.102a

(0.002) (0.002) (0.002)

× Ageijkt -0.003a -0.003a -0.003a

(0.000) (0.000) (0.000)

× Ageijkt = 2 0.096a 0.096a 0.096a

(0.002) (0.002) (0.002)

× Ageijkt = 3 0.093a 0.093a 0.093a

(0.002) (0.002) (0.002)

× Ageijkt = 4 0.087a 0.087a 0.087a

(0.002) (0.002) (0.002)

× Ageijkt = 5 0.086a 0.086a 0.087a

(0.003) (0.003) (0.002)

× Ageijkt = 6 0.082a 0.082a 0.081a

(0.003) (0.002) (0.003)

× Ageijkt = 7 0.079a 0.079a 0.078a

(0.003) (0.003) (0.003)

× Ageijkt = 8 0.076a 0.076a 0.076a

(0.004) (0.004) (0.004)

× Ageijkt = 9 0.077a 0.076a 0.077a

(0.005) (0.005) (0.005)

× Ageijkt = 10 0.074a 0.074a 0.075a

(0.009) (0.009) (0.009)

Ageijkt -0.034a -0.040a 0.019a

(0.001) (0.001) (0.002)

Sizeijkt -1.053a -1.015a

(0.016) (0.017)

× Ageijkt 0.109a 0.101a

(0.003) (0.003)

Observations 1870377 1870377 1870377 1870377 1501840 1501840

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%. a significant at 1%. aijkt is our estimate

of the demand shock from equation (17). Compared to our baseline methodology, in this table we include jkt fixed effects in the estimation

of the price residuals ε
p
ijkt

used to identify demand shocks. ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt

is the number of years since the last entry of the firm on market jk (reset to zero after one year of exit). Sizeijkt is proxied by the value sold

by firm i on market jk during year t divided by the total value exported by French firms in market jk during year t. Columns (5) and (6)

include size bins corresponding to the ten deciles of size variable, computed by market-year. Age dummies included alone in columns (2), (4)

and (6) but coefficients not reported.
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Table A.9: Prediction 1: controlling for size (robustness 1/2)

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. var. ∆εqijk,t+1

Size Market share (quantity) log values
Functional form Linear Bins Linear Bins

aijkt − εqijkt 0.098a 0.082a 0.104a 0.103a

(0.002) (0.002) (0.002) (0.002)

× Ageijkt -0.003a -0.002a -0.004a -0.003a

(0.000) (0.000) (0.000) (0.000)

× Ageijkt = 2 0.092a 0.079a 0.098a 0.097a

(0.002) (0.002) (0.002) (0.002)

× Ageijkt = 3 0.089a 0.077a 0.094a 0.093a

(0.002) (0.002) (0.002) (0.002)

× Ageijkt = 4 0.083a 0.071a 0.088a 0.087a

(0.002) (0.002) (0.002) (0.002)

× Ageijkt = 5 0.083a 0.072a 0.087a 0.087a

(0.002) (0.002) (0.002) (0.002)

× Ageijkt = 6 0.079a 0.068a 0.083a 0.082a

(0.002) (0.002) (0.002) (0.003)

× Ageijkt = 7 0.077a 0.066a 0.080a 0.078a

(0.003) (0.003) (0.003) (0.003)

× Ageijkt = 8 0.075a 0.065a 0.077a 0.076a

(0.004) (0.004) (0.004) (0.004)

× Ageijkt = 9 0.076a 0.068a 0.077a 0.078a

(0.005) (0.005) (0.005) (0.005)

× Ageijkt = 10 0.073a 0.065a 0.074a 0.074a

(0.009) (0.009) (0.009) (0.009)

Ageijkt -0.039a 0.016a -0.148a 0.024a

(0.001) (0.002) (0.003) (0.002)

Sizeijkt -0.891a -0.857a -0.184a -0.180a

(0.015) (0.015) (0.002) (0.003)

× Ageijkt 0.090a 0.083a 0.015a 0.014a

(0.002) (0.002) (0.000) (0.000)

Observations 1870377 1870377 1501840 1501840 1870377 1870377 1501840 1501840

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%. a significant at 1%. aijkt is our estimate

of the demand shock from equation (17). Compared to our baseline methodology, in this table we include jkt fixed effects in the estimation of

the price residuals ε
p
ijkt

used to identify demand shocks. ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is

the number of years since the last entry of the firm on market jk (reset to zero after one year of exit). In columns (1)-(4), Sizeijkt is proxied

by the quantity sold by firm i on market jk during year t divided by the total quantity exported by French firms in market jk during year t.

In columns (5)-(8), Sizeijkt is proxied by the log of the value sold by firm i on market jk during year t. Columns (3), (4), (7) and (8) include

size bins corresponding to the ten deciles of size variable, computed by market-year. Age dummies included alone in columns (2), (4), (6) and

(8) but coefficients not reported.
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Table A.10: Prediction 1: controlling for size (robustness 2/2)

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. var. ∆εqijk,t+1

Size Market share (value) Market share (quantity)
Functional form Linear Bins Linear Bins

aijkt − εqijkt 0.102a 0.095a 0.097a 0.111a

(0.002) (0.003) (0.002) (0.003)

× Ageijkt -0.004a -0.003a -0.003a -0.002a

(0.000) (0.000) (0.000) (0.000)

× Ageijkt = 2 0.096a 0.100a 0.092a 0.097a

(0.002) (0.003) (0.002) (0.003)

× Ageijkt = 3 0.092a 0.098a 0.088a 0.095a

(0.002) (0.003) (0.002) (0.003)

× Ageijkt = 4 0.086a 0.092a 0.082a 0.090a

(0.002) (0.003) (0.002) (0.003)

× Ageijkt = 5 0.085a 0.092a 0.082a 0.090a

(0.003) (0.003) (0.002) (0.003)

× Ageijkt = 6 0.081a 0.087a 0.079a 0.085a

(0.003) (0.003) (0.003) (0.003)

× Ageijkt = 7 0.078a 0.084a 0.076a 0.082a

(0.003) (0.004) (0.003) (0.004)

× Ageijkt = 8 0.075a 0.082a 0.074a 0.080a

(0.004) (0.005) (0.004) (0.005)

× Ageijkt = 9 0.075a 0.084a 0.075a 0.084a

(0.005) (0.006) (0.005) (0.006)

× Ageijkt = 10 0.072a 0.081a 0.072a 0.079a

(0.009) (0.010) (0.009) (0.010)

× Sizeijk,t−1 0.011c 0.011c 0.008 0.009c

(0.006) (0.006) (0.005) (0.005)

Ageijkt -0.040a 0.019a -0.039a 0.015a

(0.001) (0.002) (0.001) (0.002)

Sizeijkt -1.053a -1.014a -0.884a -0.849a

(0.016) (0.017) (0.015) (0.015)

× Ageijkt 0.109a 0.101a 0.090a 0.083a

(0.003) (0.003) (0.002) (0.002)

Observations 1870377 1870377 1501840 1501840 1870377 1870377 1501840 1501840

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%. a significant at 1%. aijkt is our estimate

of the demand shock from equation (17). Compared to our baseline methodology, in this table we include jkt fixed effects in the estimation of

the price residuals ε
p
ijkt

used to identify demand shocks. ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is

the number of years since the last entry of the firm on market jk (reset to zero after one year of exit). In columns (1)-(4), Sizeijkt is proxied

by the value sold by firm i on market jk during year t divided by the total value exported by French firms in market jk during year t. In

columns (1)-(4), Sizeijkt is proxied by the quantity sold by firm i on market jk during year t divided by the total quantity exported by French

firms in market jk during year t. Age dummies included alone in columns (2), (4), (6) and (8) but coefficients not reported. Compared to our

baseline estimates, these regressions include additional interaction terms between aijkt − ε
q
ijk,t

and age.
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G Firm survival

This section develops the predictions of the learning model regarding firms’ survival and provides

evidence that the exit behavior of firms on specific markets is in line with the demand learning

process.

A firm decides to stop exporting a particular product to a given destination whenever the

expected value of the profits stream associated with this activity becomes negative. At the

beginning of period t (after having received t− 1 signals), expected profits for period t are given

by:

Et−1 [πijkt] =
CSiktC

S
jkt

σk
e

(
θ̃ijkt−1+

σ̃2
ijkt−1+σ2

ε

2σk

)
− Fijk.

Of course, the exit decision also depends on the expected future stream of profits, which

depends on the evolution of CSikt, C
S
jkt, θ̃ijkt−1 and σ̃2

ijkt−1 over time. Our assumption of normal

prior beliefs provides the conditional distribution of θ̃ijkt given θ̃ijkt−1 while the distribution of

σ̃2
ijkt−1 is deterministic. So, the evolution of firms’ beliefs can be summarized by θ̃ijkt−1 and t.

Up to now, we have made no assumption regarding the dynamics of the CSikt and CSjkt terms.

Here, to proceed further, we follow Hopenhayn (1992) and introduce some (mild) assumptions

on their dynamics. We label Aijkt ≡ CSiktC
S
jkt and we assume that: i) Aijkt follows a Markov

process, ii) Aijkt is bounded and iii) the conditional distribution F (Aijkt+1 | Aijkt) is continuous

in Aijkt and Aijkt+1, and F (.) is strictly decreasing in Aijkt.
8

The set of firm state variables at time t can thus be summarized by Ωijkt =
{
Aijkt, θ̃ijkt−1, t

}
.

The value function of the firm Vijk (Ωijkt) satisfies the following Bellman equation:

Vijk (Ωijkt) = max {E [πijkt (Ωijkt)] + βE [Vijk (Ωijkt+1 | Ωijkt)] , 0} (26)

where β is the rate at which firms discount profits and where we have normalized the value

of exiting to zero.9 The value function Vijk is monotonically increasing in Aijkt and θ̃ijkt−1.
10

Intuitively, the flow of future expected profits inherits the properties of expected profits at time

t. It follows that there exists a threshold value θ̃ijkt−1(Aijkt, t) such that a firm exits market jk

at time t if θ̃ijkt−1 < θ̃ijkt−1(Aijkt, t). This implies:

Prediction # 4 (firm exit): Given Aijkt and t (firm age), (a) the probability to exit decreases

with θ̃ijkt−1 and (b) a given negative difference between realized and expected demand triggers

less exit for older firms.

The literature has usually associated learning with exit rates declining with age, and we

indeed find this to be the case in our estimations. However, this relation may not necessarily be

monotonic (see Pakes and Ericson, 1998 for a discussion). The decision to exit not only depends

8While not very demanding, these assumptions restrict the set of possible dynamics for firm productivity. In
that sense, our results on firm exit decision are somewhat weaker than those about firm growth, which are robust
to any dynamics of firm productivity.

9Here, we assume that an exiting firm loses all the information accumulated in the past. If the firm enters
again market jk in the future, new initial beliefs will be drawn. In consequence, we treat the exit decision as
irreversible.

10See Hopenhayn (1992) and Jovanovic (1982).
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on the extent of firm updating (which indeed declines with age) but also on how θ̃ijkt−1(Aijkt, t)

evolves over time. If this threshold increases very rapidly for some t, the exit rate could actually

increase temporarily. For old firms however, i.e. when beliefs become accurate, and conditional

on Aijkt and t, the exit rate should tend to 0.

On the other hand, an important and general implication of our demand learning model

is that negative demand shocks should trigger less exits for older firms (prediction 4.b). The

reason is simply that firms’ posterior beliefs θ̃ijkt−1 depend less and less on demand shocks as

firms age. Hence, the exit rate may not always be decreasing with age, but demand shocks

should always have a lower impact on the exit decision in older cohorts, because they imply

less updating. Note that this prediction can also be understood as another robustness check for

our formulation of a passive learning model: in an active learning model, no matter the age of

the firm, demand shocks may trigger new investments. Their impact on future expected profits

stream should not be weakened for older firms (see Ericson and Pakes, 1995). This prediction is

not directly tested in Pakes and Ericson (1998) because they use a much less parametric model

than ours which prevents them to back out demand shocks and firms’ beliefs. Their test is solely

based on actual firm size.

To test prediction 4, note that from equation (5), θ̃ijkt−1 depends positively on θ̃ijkt−2 and

aijkt−1. We want to test if, conditional on Aijkt and firm age, the probability to exit at the end

of period t− 1 (i.e. beginning of period t) decreases with θ̃ijkt−2 and aijkt−1.

We estimate the following probabilistic model:

Sijkt = αAGEijkt−1+β(aijk,t−1−εqijk,t−1)+γεqijkt−1+δ(aijk,t−1−εqijk,t−1)×AGEijkt−1+FE+uijkt > 0

Where Sijkt = 0 is a dummy that takes the value 1 if firm i exits market jk in year t.

We expect β and γ to be negative, and δ to be positive. FE include the two sets of fixed

effects FEikt and FEjkt, which capture CSikt and CSjkt. We estimate this equation using a linear

probability model which does not suffer from incidental parameters problems, an issue that

might be important here given the two large dimensions of fixed effects we need to include.

The results for prediction 4.a are shown in Table A.11, columns (1) to (3), and are largely in

line with the model: conditional on age, the exit probability decreases with the value of demand

shocks v̂ and firm’s belief (columns (1) to (3)).

Columns (4) and (5) of Table A.11 test for prediction 4.b. We simply add to our baseline

specification of column (3) an interaction term between age and demand shock in t − 1.11 We

indeed find that the coefficient on this interaction term is positive: Young firms react more to a

given demand shock than mature exporters on the market. In column (5), a negative demand

shock of 10% increases exit probability by 3.3 percentage points for a young firm (2 years after

entry), but by only 1.3 percentage points after 7 years.

11Given our need to control for all jkt-determinants here, we use the version of v̂ijk,t−1 computed using jkt-
specific fixed effects, as in Table 4. This has no importance in columns (1) to (3) as the vector of fixed effects
includes FEjkt, but it does in columns (4) and (5) as the coefficient on the interaction between v̂ijkt−1 and age
might reflect differences in v̂ijkt−1 along the jkt dimension (as we focus on an interaction term in this case).
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Table A.11: Firm exit

(1) (2) (3) (4)
Dep. var. Pr(Sijkt = 0|Sijkt−1 = 1)

Ageijk,t−1 -0.024a -0.028a -0.022a -0.022a

(0.000) (0.000) (0.000) (0.000)

εqijkt−1 -0.043a -0.080a -0.097a

(0.000) (0.000) (0.001)

× Ageijk,t−1 0.004a

(0.000)

(aijk,t−1 − εqijkt−1) 0.033a -0.039a -0.044a

(0.000) (0.000) (0.001)

× Ageijk,t−1 0.001a

(0.000)

Observations 4885284 4885284 4885284 4885284

Robust standard errors clustered by firm-product-destination in parentheses. Estimator: LPM. All estimations include jkt and ikt fixed

effects. c significant at 10%; b significant at 5%; a significant at 1%. aijkt is our estimate of the demand shock from equation (17); ε
q
ijkt−1

is the belief of the firm about future demand from equation (14). Ageijkt is the number of years since the last entry of the firm on market jk

(reset to zero after one year of exit).
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H Firm growth

Our first stylized fact shows that the growth rates of quantities decline with age, conditional

on size. This decline comes from two different mechanisms in the passive learning model: (i)

selection (ii) larger growth rates for younger firms, unconditional on survival.

The impact of selection on growth rates is due to the fact that younger firms have greater

variance in their growth rates, which comes from their larger updating. Firms that decrease in

size are more likely to exit. Hence, the distribution of growth rates is truncated from below.

As younger firms may experience more negative growth rates due to the larger variance, this

truncation leads to larger growth rates for younger firms, conditional on survival. Note that this

mechanism holds only if exit rates are not increasing with age, which is clearly the case in our

data (see Figure 1.a in the main text and the results of the previous section on firm survival).

Second, the passive learning model is also consistent with larger growth rates for younger

firms, even if we do not condition on firm survival. This unconditional growth is quite limited in

our data (see figure 2.c), but is not in contradiction with the model. It should be noted however

that this result is driven by the assumption that exp(
aijkt
σk

) is log-normally distributed and is

thus sensitive to the functional form assumption. In the rest of this section we detail the proof

of this result.

Expected growth rate, conditional on size, unconditional on survival. The expected

(quantity) growth rate of firm i at time t, conditional on its size, and non conditional on survival,

is given by:

Et−1

[
q∗ijkt+1

]
q∗ijkt

where Et−1

[
q∗ijkt+1

]
is the expected quantity at time t + 1, conditional on the information

available at time t − 1, i.e. conditional on the information received from t − 1 signals: aijkt−1.

In words, this is the expected value of q∗ijkt+1, given that the shock in period t, aijkt, is not

observed yet, and will lead to an updating of firm beliefs between t and t+ 1.

Given the optimal quantity choice (see equation (7)), we get:

Et−1

[
q∗ijkt+1

]
q∗ijkt

=

Et−1

[(
σk
σk−1

wit+1

ϕikt+1

)−σk (µkYjt+1

P
1−σk
jkt+1

)
Et
[
e
aijkt+1
σk

]σk]
(

σk
σk−1

wit
ϕikt

)−σk ( µkYjt

P
1−σk
jkt

)
Et−1

[
e
aijkt
σk

]σk

=

(
σk
σk−1

wit+1

ϕikt+1

)−σk (µkYjt+1

P
1−σk
jkt+1

)
Et−1

[
Et
[
e
aijkt+1
σk

]σk]
(

σk
σk−1

wit
ϕikt

)−σk ( µkYjt

P
1−σk
jkt

)
Et−1

[
e
aijkt
σk

]σk

As we work with purged quantities, we label Et−1 [gq] the expected growth rate of purged
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quantities:

Et−1 [gq] =

Et−1

[
Et
[
e
aijkt+1
σk

]σk]
Et−1

[
e
aijkt
σk

]σk

As Et−1

[
e
aijkt
σk

]
= e

1
σk

(
θ̃ijkt−1+

σ̃2
t−1+σ2

ε
2σk

)
(see appendix main text), we get:

Et−1 [gq] =

Et−1

[
e

(
θ̃ijkt+

σ̃2
t+σ2

ε
2σk

)]

e

(
θ̃ijkt−1+

σ̃2
t−1+σ2

ε

2σk

)

Note that, from t−1 perspective, θ̃ijkt is a random variable as aijkt is not observed. We may

rewrite Et−1 [gq] as:

Et−1 [gq] =
Et−1

[
eθ̃ijkt

]
e

(
σ̃2
t+σ2

ε
2σk

)

e

(
θ̃ijkt−1+

σ̃2
t−1+σ2

ε

2σk

)

We next rewrite θ̃ijkt to explicit aijkt:

θ̃ijkt = θ0

1
σ2

0

1
σ2

0
+ t

σ2
ε

+
1

t
((t− 1) aijkt−1 + aijkt)

t
σ2
ε

1
σ2

0
+ t

σ2
ε

= θ0

1
σ2

0

1
σ2

0
+ t

σ2
ε

+

1
σ2
ε

1
σ2

0
+ t

σ2
ε

(t− 1) aijkt−1 +

1
σ2
ε

1
σ2

0
+ t

σ2
ε

aijkt

θ̃ijkt being linear in aijkt, it is also normally distributed. From t − 1 perspective we get

E
[
θ̃ijkt | θ̃ijkt−1

]
= θ̃ijkt−1.

Second, remind that V(aijkt) = σ̃2
t−1 +σ2

ε , so V
(
θ̃ijkt

)
=

(
1

σ2
ε

1

σ2
0

+ t

σ2
ε

)2 (
σ̃2
t−1 + σ2

ε

)
. Since θ̃ijkt

is normally distributed, eθ̃ijkt is lognormally distributed. We thus obtain:

Et−1 [gq] =
e

θ̃ijkt−1+ 1
2

 1
σ2
ε

1
σ2

0

+ t
σ2
ε

2

(σ̃2
t−1+σ2

ε)


e

(
σ̃2
t+σ2

ε
2σk

)

e

(
θ̃ijkt−1+

σ̃2
t−1+σ2

ε

2σk

)

= e

1
2

 1
σ2
ε

1
σ2

0

+ t
σ2
ε

2

(σ̃2
t−1+σ2

ε)+
σ̃2
t−σ̃

2
t−1

2σk

As we work with log (purged) quantities, let’s take the log:

lnEt−1 [gq] =
1

2

(
1
σ2
ε

1
σ2

0
+ t

σ2
ε

)2 (
σ̃2
t−1 + σ2

ε

)
−
σ̃2
t−1 − σ̃2

t

2σk
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Given the definitions of σ̃2
t and σ̃2

t−1 (see equation (4)), we get:

lnEt−1 [gq] =
1

2

(
1
σ2
ε

1
σ2

0
+ t

σ2
ε

)2(
1

1
σ2

0
+ t−1

σ2
ε

+ σ2
ε

)
− 1

2σk

(
1

1
σ2

0
+ t−1

σ2
ε

− 1
1
σ2

0
+ t

σ2
ε

)

lnEt−1 [gq] =

(
1

2
− 1

2σk

) 1
σ2
ε(

1
σ2

0
+ t

σ2
ε

)(
1
σ2

0
+ t−1

σ2
ε

)
Note that 1

2 −
1

2σk
> 0, so lnEt−1 [gq] is always positive. Moreover, t appears in the denomi-

nator only, so this expression is strictly decreasing with t: Expected growth rates decline with

firm age in market jk.

The source of this result comes from the functional form assumption: the profit function

depends on the exponential of the demand shock aijkt. Given that aijkt is normally distributed,

exp(
aijkt
σk

) is log-normally distributed, its expectation thus depends on its variance. Without this

effect, expected growth rate (non conditional on survival) of purged quantities should always be

0, no matter firm age. Second, note that expectation is taken over exp(
aijkt
σk

) and its variance

is reduced by σk. But expectation is also taken over exp(θ̃ijkt), which does not depend on σk.

This is generating the result.
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I Belief updating and age: endogenous selection

This section presents the detailed results discussed in section 5.2 of the main text on survival

and selection bias. All these specifications draw on the predictions of our model regarding firms’

exit decision detailed in section G and Table A.11. In particular, exit probabilities depend on

aijkt, ε
q
ijkt, Ageijkt and fixed effects in the ikt and jkt dimensions and can be estimated using a

linear probability model.

We start by documenting whether the firms’ updating process identified in Table 2 varies

depending on their survival probability. This is application of the “identification-at-infinity”

method (Chamberlain, 1986; Mulligan and Rubinstein, 2008). We expect the potential selec-

tion bias related to endogenous exit decisions to be lower on sub-samples of firms, selected on

observable characteristics, most likely to survive. We first estimate equation (G) and compute

the predicted probability of exit by firm×market×year. Equation (19) is then estimated on

four sub-samples including respectively firms above the 20th, 40th, 60th and 80th percentiles of

survival probability (i.e. below the 80th, 60th, 40th and 20th of exit probability). Table A.12

presents the results when firms are allocated in quintiles depending on their raw probability of

exit. Alternatively, in Table A.13 we allocate firms in quintile of exit probability by firm-market

size. In both specifications, both the coefficient on (aijkt − εqijkt−1) and its interaction with

age are stable across sub-samples of firms and the results on the sample of firms most likely to

survive (column (5)) is very close to the full sample (column(1)).

Table A.12: Demand shocks and beliefs updating, by exit probability

(1) (2) (3) (4) (5)
Dep. var. ∆εqijk,t+1

Exit prob. All Bottom 80% Bottom 60% Bottom 40% Bottom 20%

aijkt − εqijkt 0.075a 0.075a 0.074a 0.071a 0.070a

(0.002) (0.002) (0.002) (0.002) (0.003)

× Ageijkt -0.003a -0.003a -0.003a -0.003a -0.003a

(0.000) (0.000) (0.001) (0.001) (0.001)

Ageijkt -0.038a -0.047a -0.054a -0.057a -0.069a

(0.001) (0.001) (0.001) (0.001) (0.002)

Observations 1501766 1154290 839245 531182 248194

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%. aijkt is our estimate

of the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is the number of

years since the last entry of the firm on market jk (reset to zero after one year of exit). Predicted exit probabilities are obtained by from the

estimation of Table A.11, column (4).

These results suggest that endogenous exit does not bias our results. We can go further and

try to account for a potential selection bias by including a correction term in our estimations.

Tables A.14 and A.15 directly account for the potential selection bias by including a correction

term in our estimation of equation (19). The high dimensionally of the fixed effects implied

by prediction 4 in Section G (see equation (G)) for the selection equation prevents us from

using a probit or other maximum likelihood estimator and implementing the standard Heckman

procedure. In his review of the literature on endogenous sample selection Vella (1998) however
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Table A.13: Demand shocks and beliefs updating, by exit probability (robustness)

(1) (2) (3) (4) (5)
Dep. var. ∆εqijk,t+1

Exit prob. All Bottom 80% Bottom 60% Bottom 40% Bottom 20%

aijkt − εqijkt 0.090a 0.093a 0.092a 0.093a 0.091a

(0.002) (0.003) (0.003) (0.003) (0.004)

× Ageijkt -0.004a -0.005a -0.005a -0.005a -0.005a

(0.001) (0.001) (0.001) (0.001) (0.001)

Ageijkt -0.041a -0.047a -0.049a -0.053a -0.060a

(0.001) (0.001) (0.001) (0.001) (0.002)

Observations 753646 552923 392223 248980 120723

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%. aijkt is our estimate

of the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is the number of

years since the last entry of the firm on market jk (reset to zero after one year of exit). Predicted exit probabilities are obtained by from the

estimation of Table A.11, column (4). Samples of exit probabilities are constructed by quintiles of firm size.

proposes a number of alternative procedures based on linear (Olsen, 1980), semi-parametric

(Cosslett, 1991), or polynominal estimations of correction terms. We report results of these

three alternative procedures as well as a standard Heckman estimator ignoring the ikt and

jkt fixed effects in the selection equation in Tables A.14 and A.15. Vella (1998) shows that

the assumption of normality in the Heckman procedure can be relaxed to allow for consistent

two step estimation using methods based on alternative distributional assumptions than probit

in the selection equation. In particular, Vella (1998) argues that Olsen’s procedure generally

produces results similar to a Heckman two-step procedure. Instead of assuming Normality of the

selection equation’s error term, Olsen assumes that it follows a uniform distribution. Exclusion

of at least one variable from the first step is required in Olsen, not in Heckman, as the Heckman

estimator includes as a correction term the Inverse Mills ratio which maps the prediction of the

selection equation into a correction term in a nonlinear fashion (hence the correction term is

never perfectly collinear with the second-step regressors). The ikt and jkt fixed effects included

in equation (G) can serve as exclusion variables in a linear procedure. The complete set of

results is reported in columns (1)-(4) of table A.14. Alternatively Cosslett (1991) proposes a

semi-parametric estimator in which the selection correction is approximated through indicator

variables. In columns (5)-(8) of Table A.14, we use 100 bins corresponding to each centile of

the predicted exit probabilities as correction terms. Finally, in columns (1)-(4) of Table A.15

the predicted probability of exit is introduced directly when estimating equation (19) in the

form of a 10 degree polynomial. The last three columns of Table A.15 report the results of

a standard two-step Heckman procedure excluding the ikt and jkt fixed effects in the probit

estimation of the selection equation and using the nonlinearity of the Inverse Mills Ratio to

identify its coefficient. Overall, all these alternative treatments of the sample selection bias

leave our coefficients of interest largely unaffected, suggesting that endogenous selection is not

driving our results.

xl



Table A.14: Demand shocks and beliefs updating: controlling for endogenous exit

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. var. ∆εqijkt+1 ∆εqijkt+1

Selection correction Linear Semi-parametric

aijkt − εqijkt 0.065a 0.075a 0.075a 0.065a 0.075a 0.075a

(0.001) (0.002) (0.001) (0.001) (0.002) (0.001)

× Ageijkt -0.003a -0.003a -0.003a -0.003a

(0.000) (0.000) (0.000) (0.000)

× Ageijkt = 2 0.069a 0.069a

(0.001) (0.001)

× Ageijkt = 3 0.064a 0.064a

(0.001) (0.001)

× Ageijkt = 4 0.060a 0.060a

(0.002) (0.002)

× Ageijkt = 5 0.056a 0.056a

(0.002) (0.002)

× Ageijkt = 6 0.059a 0.059a

(0.002) (0.002)

× Ageijkt = 7 0.055a 0.055a

(0.003) (0.003)

× Ageijkt = 8 0.051a 0.051a

(0.004) (0.004)

× Ageijkt = 9 0.054a 0.054a

(0.007) (0.007)

̂Pr(exitijkt) -0.409a -0.409a -0.409a -0.417a

(0.005) (0.005) (0.003) (0.005)

Ageijkt -0.054a -0.054a -0.054a -0.057a -0.057a -0.057a

(0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Observations 1501766 1501766 1501766 1501766 1501766 1501766 1501766 1501766

Robust standard errors clustered by firm in parentheses (bootstrapped in columns (3) and (7)). c significant at 10%; b significant at 5%; a

significant at 1%. Age dummies included alone in columns (4) and (8) but coefficients not reported. aijkt is our estimate of the demand

shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is the number of years since the

last entry of the firm on market jk (reset to zero after one year of exit). In columns (1)-(4), predicted exit probabilities are obtained from the

estimation of Table A.11, column (4) and introduced directly in equation (19). In columns (5)-(8), they are introduced semi-parametrically in

the second step, i.e. we included 100 bins corresponding to each percentile of the variable.
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Table A.15: Demand shocks and beliefs updating: controlling for endogenous exit (robustness)

(1) (2) (3) (4) (5) (6) (7)
Dep. var. ∆εqijk,t+1 ∆εqijk,t+1

Selection correction Polynomial Heckman

aijkt − εqijkt 0.065a 0.075a 0.075a 0.078a 0.086a

(0.001) (0.002) (0.001) (0.002) (0.004)

× Ageijkt -0.003a -0.003a -0.003a

(0.000) (0.000) (0.001)

× Ageijkt = 2 0.069a 0.080a

(0.001) (0.002)

× Ageijkt = 3 0.064a 0.078a

(0.001) (0.003)

× Ageijkt = 4 0.060a 0.076a

(0.002) (0.004)

× Ageijkt = 5 0.056a 0.062a

(0.002) (0.005)

× Ageijkt = 6 0.059a 0.072a

(0.002) (0.006)

× Ageijkt = 7 0.055a 0.070a

(0.003) (0.008)

× Ageijkt = 8 0.051a 0.065a

(0.004) (0.011)

× Ageijkt = 9 0.055a 0.058a

(0.007) (0.016)

Ageijkt -0.057a -0.057a -0.057a -0.594a -0.595a

(0.001) (0.001) (0.001) (0.006) (0.006)

λ 4.922a 4.922a 4.918a

(0.039) (0.039) (0.039)

Observations 1501766 1501766 1501766 1501766 1550474 1550474 1550474

Robust standard errors clustered by firm in parentheses (bootstrapped in columns (3). c significant at 10%; b significant at 5%; a significant

at 1%. Age dummies included alone in columns (4) but coefficients not reported. aijkt is our estimate of the demand shock from equation

(17); ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is the number of years since the last entry of the firm

on market jk (reset to zero after one year of exit). In columns (1)-(4), predicted exit probabilities are obtained by from the estimation of

Table A.11, column (4) and introduced directly in equation (19) in the form of a 10-degree polynomial. In columns (5)-(6), we use a Heckman

estimator which estimates a probit in the first step (omitting the ikt and jktfixed effects) and introduces the inverse mills ratio (λ) in the

second step.
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J Belief updating and age: additional robustness

J.1 Extra-EU results

In Table A.16, we restrict our sample to extra-EU destination countries to check that the different

declaration thresholds applying to intra-EU expeditions and extra-EU exports (as explained in

footnote 11 of the main text) do not affect our results. Focusing on extra-EU countries reduces

the number of observations by 40%, but does not alter our coefficients of interest compared to

the baseline results in Table 2.

Table A.16: Prediction 1: demand shocks and beliefs updating (extra EU)

(1) (2) (3) (4)
Dep. var. ∆εqijkt+1

aijkt − εqijkt 0.061a 0.072a 0.072a

(0.001) (0.002) (0.001)

× Ageijkt -0.003a -0.003a

(0.000) (0.000)

× Ageijkt = 2 0.067a

(0.001)

× Ageijkt = 3 0.062a

(0.001)

× Ageijkt = 4 0.056a

(0.002)

× Ageijkt = 5 0.055a

(0.003)

× Ageijkt = 6 0.055a

(0.003)

× Ageijkt = 7 0.050a

(0.003)

× Ageijkt = 8 0.048a

(0.003)

× Ageijkt = 9 0.048a

(0.004)

× Ageijkt = 10 0.045a

(0.007)

Ageijkt -0.033a -0.033a -0.033a

(0.001) (0.001) (0.001)

Observations 1109761 1109761 1109761 1109761

Robust standard errors clustered by firm in parentheses (bootstrapped in columns (3)). c significant at 10%; b significant at 5%; a significant

at 1%. Sample extra EU destinations only. Age dummies included alone in columns (4) but coefficients not reported. aijkt is our estimate of

the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand from equation (14). Ageijkt is the number of years

since the last entry of the firm on market jk (reset to zero after one year of exit).
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J.2 Alternative age definitions

So far we have treated each entry into a market as a new one: age was reset to zero in case of

exit. We now check the sensitivity of our results to alternative definitions of age. We define two

alternative measures of age. We first assumes that information on local demand is not forgotten

by the firm when it does not serve a product-destination only one year and accordingly reset age

to zero only after two consecutive years of exit. In the second definition, we assume that firms

keep entirely their knowledge about local demand when they exit, regardless of the number of

exit years; this third age variable is simply the number of exporting years since the first entry

of the firm.

Table A.17 shows that the results using these alternative definitions are qualitatively similar

to our baseline estimates. However, the effects of age – its direct effect and its effect on firms’

reactions to demand signals – are slightly lower than in our baseline table.
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Table A.17: Prediction 1: alternative age definitions

(1) (2) (3) (4) (5) (6)
Dep. var. ∆εqijk,t+1 ∆εqijk,t+1

Age definition # years since last entry # years exporting since first entry
(reset after 2 years exit)

aijkt − εqijkt 0.064a 0.073a 0.064a 0.072a

(0.001) (0.001) (0.001) (0.001)

× Ageijkt -0.002a -0.002a

(0.000) (0.000)

× Ageijkt = 2 0.068a 0.068a

(0.001) (0.001)

× Ageijkt = 3 0.065a 0.065a

(0.001) (0.001)

× Ageijkt = 4 0.061a 0.063a

(0.002) (0.002)

× Ageijkt = 5 0.059a 0.061a

(0.002) (0.002)

× Ageijkt = 6 0.060a 0.061a

(0.002) (0.002)

× Ageijkt = 7 0.057a 0.058a

(0.002) (0.003)

× Ageijkt = 8 0.056a 0.057a

(0.003) (0.003)

× Ageijkt = 9 0.054a 0.054a

(0.004) (0.004)

× Ageijkt = 10 0.047a 0.047a

(0.007) (0.007)

Ageijkt -0.030a -0.030a -0.029a -0.029a

(0.001) (0.001) (0.001) (0.001)

Observations 1854141 1854141 1854141 1854141 1854141 1854141

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%. Age dummies included

alone in columns (3) and (6) but coefficients not reported. aijkt is our estimate of the demand shock from equation (17); ε
q
ijkt

is the belief

of the firm about future demand from equation (14).

xlv



J.3 Reconstructed years

The usual aggregation of export sales by calendar year is likely to bias downward the average sales

of new exporters because some enter a given market late in the year (Berthou and Vicard, 2015).

The average growth rate of quantities would in turn be inflated between the first, potentially

incomplete, and the second (full) year of export. When estimating equation (19), the dummy for

age two picks the average bias related to the incompleteness of the first year of export. In Table

A.18, we go one step further and address this issue directly by performing our estimation strategy

on reconstructed years beginning the month of first entry at the firm-product-destination level.

The results shows that both the average updating of the firms’ beliefs and its interaction with

age are quantitatively similar to our baseline in Table 2.

The drawback of using such reconstructed yearly data is the inability to control consistently

for market-year fixed effects in equations (14) and (15): introducing market×year fixed effects

specific by firms’ month of entry reduces dramatically the number of observations for which we

can identify beliefs and demand shocks. We therefore stick to the usual calendar year dataset

in the main text.
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Table A.18: Prediction 1: reconstructed years

(1) (2) (3) (4)
Dep. var. ∆εqijkt+1

aijkt − εqijkt 0.067a 0.078a 0.078a

(0.001) (0.001) (0.001)

× Ageijkt -0.003a -0.003a

(0.000) (0.000)

× Ageijkt = 2 0.072a

(0.001)

× Ageijkt = 3 0.066a

(0.001)

× Ageijkt = 4 0.066a

(0.002)

× Ageijkt = 5 0.058a

(0.002)

× Ageijkt = 6 0.061a

(0.002)

× Ageijkt = 7 0.054a

(0.002)

× Ageijkt = 8 0.056a

(0.004)

× Ageijkt = 9 0.056a

(0.005)

Ageijkt -0.010a -0.010a -0.010a

(0.001) (0.001) (0.001)

Observations 1495774 1495774 1495774 1495774

Robust standard errors clustered by firm in parentheses (bootstrapped in column (3)). c significant at 10%; b significant at 5%. a significant

at 1%. aijkt is our estimate of the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand from equation

(14). Ageijkt is the number of years since the last entry of the firm on market jk (reset to zero after one year of exit). Age dummies

included alone in column (4) but coefficients not reported. In this Table years are reconstructed beginning the month of first entry at the

firm-product-destination level
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J.4 σk computed at 4-digit (HS4) level

In Table A.19, we use demand shocks obtained by estimating equation (17) by 4-digit product

instead of 6-digit product of the Harmonized System classification in order to allow for a larger

number of observations when estimating σk. As expected, our estimates of σk are slightly lower

in this case than in the baseline 6-digit case (a median of 4.98 and a mean of 5.83). The results

shown in Table A.19 are close to our baseline results.
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Table A.19: Prediction 1: σk computed at 4-digit (HS4) level

(1) (2) (3) (4)
Dep. var. ∆εqijkt+1

Robustness σk at HS4 level

aijkt − εqijkt 0.073a 0.084a 0.084a

(0.001) (0.001) (0.001)

× Ageijkt -0.004a -0.004a

(0.000) (0.000)

× Ageijkt = 2 0.078a

(0.001)

× Ageijkt = 3 0.072a

(0.001)

× Ageijkt = 4 0.067a

(0.002)

× Ageijkt = 5 0.065a

(0.002)

× Ageijkt = 6 0.064a

(0.002)

× Ageijkt = 7 0.059a

(0.002)

× Ageijkt = 8 0.060a

(0.003)

× Ageijkt = 9 0.059a

(0.004)

× Ageijkt = 10 0.057a

(0.006)

Ageijkt -0.032a -0.033a -0.033a

(0.001) (0.001) (0.000)

Observations 1877732 1877732 1877732 1877732

Robust standard errors clustered by firm in parentheses (bootstrapped in column (3)). c significant at 10%; b significant at 5%. a significant

at 1%. aijkt is our estimate of the demand shock from equation (17), estimated by HS4 products instead of HS6; ε
q
ijkt

is the belief of the

firm about future demand from equation (14). Ageijkt is the number of years since the last entry of the firm on market jk (reset to zero after

one year of exit). Age dummies included alone in column (4) but coefficients not reported.
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J.5 Controlling for ijt fixed effects

The theoretical framework developed in section 3 assumes no informational spillovers, consid-

ering θijk0 as exogenous. While our identification strategy controls de facto for several sources

of informational spillovers – the firm×product×year fixed effects included in equations (14) and

(15) account for past experience gathered from selling the same product on the domestic or other

markets –, it does not take into those from selling other products in the same destination. To

this end, we extend our identification strategy by including ijt fixed effects in equations (12) and

(13) and re-estimate aijkt from these alternative εqijkt and εpijkt to test prediction 1. Table A.20

reports the results and show that our conclusion remain robust qualitatively as well as quantita-

tively. This lends support to our assumption that information is indeed mostly product-market

specific. If shocks and beliefs were correlated across products within destinations, the firms’

response to a demand shock would partly reflect its belief updating behavior on other products:

including ijt fixed effects should dampen the extent of estimated belief updating.
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Table A.20: Prediction 1: controlling for ijt fixed effects

(1) (2) (3) (4)
Dep. var. ∆εqijkt+1

aijkt − εqijkt 0.091a 0.102a 0.102a

(0.001) (0.002) (0.001)

× Ageijkt -0.003a -0.003a

(0.001) (0.000)

× Ageijkt = 2 0.096a

(0.002)

× Ageijkt = 3 0.092a

(0.002)

× Ageijkt = 4 0.087a

(0.002)

× Ageijkt = 5 0.085a

(0.003)

× Ageijkt = 6 0.082a

(0.003)

× Ageijkt = 7 0.076a

(0.004)

× Ageijkt = 8 0.078a

(0.005)

× Ageijkt = 9 0.079a

(0.005)

Ageijkt -0.013a -0.013a -0.013a

(0.000) (0.000) (0.001)

Observations 1217810 1217810 1217810 1217810

Robust standard errors clustered by firm in parentheses (bootstrapped in column (3)). c significant at 10%; b significant at 5%. a significant

at 1%. aijkt is our estimate of the demand shock from equation (17); ε
q
ijkt

is the belief of the firm about future demand. ε
q
ijkt−1

and

ε
p
ijkt−1

are respectively estimated from equation (14) and equation (15) including additionally fixed effects in the ijt dimension. Ageijkt is

the number of years since the last entry of the firm on market jk (reset to zero after one year of exit). Age dummies included alone in column

(4) but coefficients not reported.
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K Test of stationary demand

In the learning model, firms learn about an idiosyncratic demand parameter which is assumed

to be constant over time. The initial size of a firm (i.e. its initial belief) should be a useful

predictor of its beliefs and sales throughout its life, even controlling for past beliefs. In other

words, the evolution of firms’ beliefs should not be Markov. Such a prediction would not arise in

models with ”active learning” where firms invest to increase their profitability, possibly through

demand accumulation. To discriminate between these two classes of models, Pakes and Ericson

(1998) (see also Abbring and Campbell, 2005 for an application) propose to regress current

firms beliefs on their immediate past beliefs and their initial prior beliefs. In Table A.21, we

regress the beliefs of the firms after x years, x = 3, ..., 8, on their belief at the time of entry,

controlling for the immediate lag of the belief. We restrict our sample to firms present at least

8 years to avoid composition effects.12 Two results are worth mentioning. First, initial beliefs

have a positive and significant effect on future beliefs, and this effect remains highly significant

even 8 years after entry. Second, the immediate lag of the belief becomes a better predictor of

the current belief as the firm gets older, suggesting that firms indeed converge to their demand

parameter. Both results are consistent with our assumption on aijk. Note that these results

are not sensitive to the number of lags used: Table A.22 focuses on firms aged 6 to 8 years for

which we can include up to four lags of the belief (we find a similar pattern for firms aged 5 to 8

years for which we can include up to 3 lags). We find that the initial belief remains a significant

predictor of current belief after 6, 7 or 8 years when increasing the number of lags of beliefs

included as explanatory variables.

12Similar results are obtained when restricting the sample to firms present j years, j = 5, ..., 9.
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Table A.21: Passive versus active learning

(1) (2) (3) (4) (5) (6)
Dep. var. εqijkt
Age definition # years since last entry (reset after 1 year of exit)
Age 3 4 5 6 7 8

εqijkt−1 0.541a 0.587a 0.632a 0.645a 0.659a 0.668a

(0.008) (0.007) (0.007) (0.006) (0.007) (0.007)

εqijk0 0.144a 0.135a 0.097a 0.091a 0.079a 0.075a

(0.006) (0.006) (0.005) (0.005) (0.005) (0.005)

Observations 41034 41034 41034 41034 41034 41034

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%.

εqijkt−1 and εqijk0 are respectively the beliefs of the firm in market jk in period t− 1 and in the first period. Beliefs given

by equation (14). Sample of firms-markets present at least 8 years.

Table A.22: Passive versus active learning: robustness

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Dep. var. εqijkt
Age definition # years since last entry (reset after 1 year of exit)
Age 6 7 8

εqijk0 0.091a 0.050a 0.031a 0.020a 0.079a 0.045a 0.029a 0.019a 0.075a 0.046a 0.032a 0.023a

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.005) (0.005)

εqijkt−1 0.645a 0.521a 0.504a 0.503a 0.659a 0.520a 0.503a 0.498a 0.668a 0.530a 0.509a 0.505a

(0.006) (0.007) (0.008) (0.008) (0.007) (0.007) (0.008) (0.008) (0.007) (0.008) (0.009) (0.009)

εqijkt−2 0.210a 0.172a 0.168a 0.223a 0.181a 0.174a 0.219a 0.171a 0.163a

(0.007) (0.008) (0.008) (0.007) (0.008) (0.008) (0.007) (0.008) (0.008)

εqijkt−3 0.089a 0.076a 0.090a 0.069a 0.099a 0.075a

(0.006) (0.007) (0.007) (0.008) (0.007) (0.008)

εqijkt−4 0.034a 0.050a 0.054a

(0.007) (0.006) (0.007)

Observations 41034 41034 41034 41034 41034 41034 41034 41034 41034 41034 41034 41034

Robust standard errors clustered by firm in parentheses. c significant at 10%; b significant at 5%; a significant at 1%.

εqijkt−1 and εqijk0 are respectively the beliefs of the firm in market jk in period t− 1 and in the first period. Beliefs given

by equation (14).
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L Profiles of prices and quantities

Table A.23 provides the full set of results used in figure 2 of the main text. In columns (9) and

(10) we additionally include firms’ size as an explaining variable when regressing εpijkt on age,

to control for the fact that size would affect firms’ pricing decisions in a non-CES framework.

It confirms that εpijkt decreases with age (column (9)) but not when we account for composition

effects through the inclusion of firm×market fixed effects (column (10)). Table A.24 reproduces

estimations in Table A.23 on our dataset with reconstructed years. As expected, reconstructing

years from the month of first entry by firm×product×destination dampens the initial increase

in quantities sold between the first and second year but leaves unchanged the quantity profile

thereafter.
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Figure A.5: Dynamics of prices and quantities residuals: surviving firms (1996-2005)
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Note: This figure plots the coefficients obtained when regressing the prices and quantities residuals εpijkt and εqijkt
on a set of age dummies and restricting the sample to firms-markets surviving the entire period. The complete

set of coefficients and standard errors are shown in Table A.23 (columns (4) and (8)).
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M Variance of growth rates: robustness

Tables A.25 and A.26 report the full set of results used to draw figure 3 in the main text. Table

A.25 shows that the variance of both εqijkt and εpijkt decreases with age. As expected, the decline

in the variance is larger for the quantity residuals. These results are robust to controlling for

the number of observations (columns (3) and (7)), focusing on permanent exporters that survive

throughout our time span (columns (4) and (8)), controlling for the average firm size in the

cohort (columns (3)-(6) of Table A.26) or using our alternative definitions of age (columns (7)-

(14) of Table A.26). Finally, columns (1) and (2) of Table A.26 confirm that the variance of

εvalueijkt decreases sharply with age as well.
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Table A.25: Prediction 2.b: age and variance of growth rates

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. var. ——————V(∆εqijkt)—————— ——————V(∆εpijkt)——————

Age definition # years since last entry # years since last entry
(reset after 1 year of exit) (reset after 1 year of exit)

Sample All Permanent All Permanent
exporters1 exporters1

Ageijkt -0.051a -0.045a -0.018a -0.029a -0.024a -0.007a

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Ageijkt = 3 -0.110a -0.066a

(0.004) (0.002)

Ageijkt = 4 -0.169a -0.098a

(0.005) (0.003)

Ageijkt = 5 -0.211a -0.120a

(0.005) (0.003)

Ageijkt = 6 -0.236a -0.134a

(0.006) (0.004)

Ageijkt = 7 -0.269a -0.148a

(0.008) (0.004)

Ageijkt = 8 -0.303a -0.164a

(0.009) (0.005)

Ageijkt = 9 -0.295a -0.171a

(0.012) (0.007)

Ageijkt = 10 -0.338a -0.185a

(0.018) (0.011)

# observations 0.008a 0.006 0.005a 0.005
(0.001) (0.006) (0.000) (0.004)

Observations 434593 434593 434593 44421 434593 434593 434593 44421
Cohort FE Yes Yes Yes Yes Yes Yes Yes Yes

Standard errors clustered by cohort in parentheses. A cohort of exporters in a product-destination market includes all

firms starting to export to that market in a given year. Cohort fixed effects included in all estimations. c significant at

10%; b significant at 5%; a significant at 1%. 1 firms present all years on market jk. “# observations ” is the number of

observations of the cohort in the current year.
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