Notes to frictionless case of the model in

Sequentiality versus Simultaneity:

Interrelated Factor demand

April 19, 2013

Magne K. Asphjell

Wilko Letterie

Øivind A. Nilsen

Gerard A. Pfann

Derivation serial correlation investment and hiring rate

Equations:

1. \(A_t = A_t^{ρ} \alpha^ε \) implying \(a_t = \ln A_t = ρ \ln A_{t-1} + ε_t = ρu_{t-1} + e_t \)

NB \(E(e^ε) = e^{σ^2/2} \) with \(ε_t \sim N(0, σ^2) \)

2. \(K_{t+1} = (1 - δ^K) \cdot K_t + I_t \) implying that \(\frac{I_t}{K_t} = \frac{K_{t+1} - K_t}{K_t} + δ^K \)

3. \(L_{t+1} = (1 - δ^L) \cdot L_t + H_t \) implying that \(\frac{H_t}{L_t} = \frac{L_{t+1} - L_t}{L_t} + δ^L \)

These equations also mean that net and gross change rates have the same covariances / correlations if depreciation and autonomous quits are fixed.

With frictionless inputs and time to build the firm maximizes each period:

4. \(\max_{i_t, h_t} E[A_{i_t} \cdot \left((1 - δ^K) \cdot K_t + I_t \right)^α \left((1 - δ^L) \cdot L_t + H_t \right)^β - p^I I_t - p^H H_t] \)

This gives two first order conditions

5. \(αE(A_{i_t})K_{i_t}^{α-1}L_t^{β} - p^I = 0 \)

6. \(βE(A_{i_t})K_{i_t}^{α}L_t^{β-1} - p^H = 0 \)
Therefore,

\[K_{t+1} = \left[\frac{\alpha}{p^I} E(A_{t+1}) L_{t+1}^\beta \right]^{\frac{1}{1-\alpha}} \]

\[L_{t+1} = \left[\frac{\beta}{p^H} E(A_{t+1}) K_{t+1}^\alpha \right]^{\frac{1}{1-\beta}} \]

Hence,

\[
L_{t+1} = \left[\frac{\beta}{p^H} E(A_{t+1}) \left(\left[\frac{\alpha}{p^I} E(A_{t+1}) L_{t+1}^\beta \right]^{\frac{1}{1-\alpha}} \right)^\alpha \right]^{\frac{1}{1-\beta}} \\
= \frac{\beta}{p^H} \left(\frac{\alpha}{p^I} \right)^{\frac{\alpha}{1-\alpha(1-\beta)}} E(A_{t+1})^{1-\beta} \cdot L_{t+1}^{\frac{\alpha}{1-\alpha(1-\beta)}}
\]

\[L_{t+1} \propto E(A_{t+1})^{\frac{1}{1-\alpha-\beta}} \]

Thus,

\[L_{t+1} \propto E(A_{t+1})^{\frac{1}{1-\alpha-\beta}} \]

The constant terms are disregarded here as they play no role later.

Likewise for capital

\[K_{t+1} \propto E(A_{t+1})^{\frac{1}{1-\alpha-\beta}} \]

For labour it is found

\[\ln L_{t+1} = \frac{1}{1-\alpha-\beta} \ln E(A_{t+1}) + \text{const} = \frac{1}{1-\alpha-\beta} \ln E(A_t^{\rho} e^{\varepsilon_t}) + \text{const} = \frac{\rho}{1-\alpha-\beta} a_t + \text{const} \]

As a consequence,

\[\ln L_{t+1} = \frac{\rho^2}{1-\alpha-\beta} \cdot a_{t-1} + \frac{\rho}{1-\alpha-\beta} \varepsilon_t + \text{const} = \frac{\rho^3}{1-\alpha-\beta} \cdot a_{t-2} + \frac{\rho^2}{1-\alpha-\beta} \varepsilon_{t-1} + \frac{\rho}{1-\alpha-\beta} \varepsilon_t + \text{const} \]

\[= \rho \cdot \ln L_t + \frac{\rho}{1-\alpha-\beta} \varepsilon_t + \text{const} \]

To save a bit on notation this is rewritten as

\[x_t = \rho x_{t-1} + \eta_{t-1} + \text{const} \]
This means that $x_t - x_{t-1}$ is a growth rate as the underlying variable is in natural logs. Thus

$$x_t = \sum_{i=0}^{\infty} \rho^i \eta_{t-i} + \frac{\text{const}}{1 - \rho}$$

Therefore $E(x_t - x_{t-1}) = 0$ and the variance of the growth rate is

$$E(x_t - x_{t-1})^2 = E\left(\sum_{i=0}^{\infty} \rho^i \eta_{t-i} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right)^2 = E\left(\eta_{t-1} + \rho \sum_{i=0}^{\infty} \rho^i \eta_{t-i} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right)^2$$

$$= E\left(\eta_{t-1} + (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right)^2 = \sigma^2 \left(1 + \frac{(1 - \rho)^2}{(1 - \rho^2)}\right) = \sigma^2 \left(1 + \frac{(1 - \rho)}{1 + \rho}\right) = \sigma^2 \left(\frac{2}{1 + \rho}\right)$$

The first order covariance is

$$E(x_t - x_{t-1})(x_{t-1} - x_{t-2}) = E\left(\sum_{i=0}^{\infty} \rho^i \eta_{t-i-1} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right)$$

$$= E\left(\eta_{t-1} + (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right)$$

$$= E\left((\rho - 1) \eta_{t-2} + \rho (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-3}\right)$$

$$= \sigma^2 \left((\rho - 1) + \rho \frac{(1 - \rho)^2}{1 - \rho^2}\right) = \sigma^2 \left((\rho - 1) + \rho \frac{(1 - \rho)}{1 + \rho}\right) = -\sigma^2 \left(\frac{1 - \rho}{1 + \rho}\right)$$

Using equations (17) and (18) the first order correlation is obtained.

$$\text{Corr}(x_t - x_{t-1}, x_{t-1} - x_{t-2}) = \frac{-\sigma^2 \left(\frac{1 - \rho}{1 + \rho}\right)}{\sigma^2 \left(\frac{2}{1 + \rho}\right)} = \frac{-1 - \rho}{2}$$

Thus with $-1 < \rho < 1$, the expression in equation (19) is negative. This means that the first order serial correlations for the investment rate, I/K, and the hiring rate H/L, are negative. The second order covariance is
\[
E(x_t - x_{t-1}) (x_{t-2} - x_{t-3}) = E\left(\sum_{i=0}^{\infty} \rho^i \eta_{t-i-1} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2}\right) \left(\sum_{i=0}^{\infty} \rho^i \eta_{t-i-3} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4}\right) = \\
= E\left(\rho^3 \sum_{i=0}^{\infty} \rho^i \eta_{t-i-3} - \rho \sum_{i=0}^{\infty} \rho^i \eta_{t-i-2} \right) \left(\sum_{i=0}^{\infty} \rho^i \eta_{t-i-3} - \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4}\right) \\
= E\left(\rho^3 \eta_{t-3} - \rho \eta_{t-2} + \rho^3 \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4} - \rho^2 \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4}\right) \left(\eta_{t-3} + (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4}\right) = \\
(20) \\
= E\left(\rho (\rho - 1) \eta_{t-3} + \rho^2 (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4} \right) \left(\eta_{t-3} + (\rho - 1) \sum_{i=0}^{\infty} \rho^i \eta_{t-i-4}\right) = \\
= \sigma^2 \left(\rho (\rho - 1) + \rho^2 \left(\frac{1 - \rho}{1 + \rho}\right)^2\right) = \sigma^2 \left(\rho (\rho - 1) + \rho^2 \left(\frac{1 - \rho}{1 + \rho}\right)\right) = -\sigma^2 \rho \left(\frac{1 - \rho}{1 + \rho}\right)
\]

Hence,

\[
(21) \text{Corr}(x_t - x_{t-1}) (x_{t-2} - x_{t-3}) = \frac{-\sigma^2 \rho \left(\frac{1 - \rho}{1 + \rho}\right)}{\sigma^2 \left(\frac{2}{1 + \rho}\right)} = -\frac{1 - \rho}{2} \rho
\]

Thus, the second order correlation has the opposite sign of \(\rho\). For labour and capital the derivations are identical, and hence their correlation moments are the same.

Derivation serial correlation sales growth rate

Using equations (11) and (12) sales is given by

\[
22) Y_{t+1} = A_{t+1} K_{t+1}^{\alpha} L_{t+1}^{\beta} \propto A_{t+1} E(A_{t+1})^{\alpha} E(A_{t+1})^{\beta} = A_{t+1} E(A_{t+1})^{\alpha + \beta}
\]

First define \(\gamma = \frac{\alpha + \beta}{1 - \alpha - \beta}\)

Hence,

\[
223) \ln Y_{t+1} = \ln A_{t+1} + \gamma \ln E(A_{t+1}) = a_{t+1} + \gamma \ln E(A_{t+1} e^{\varepsilon_{t+1}}) = a_{t+1} + \gamma a_t + d + \rho \ln Y_t + \varepsilon_{t+1} + \gamma \varepsilon_t + \tilde{d}
\]

So \(\ln Y_t\) is an ARMA(1,1) process. The covariance structure of such a process is given by Granger and Newbold (1987, p27). If \(\lambda_p = \text{cov}(\ln Y_t, \ln Y_{t-p})\) then
(24) \[\lambda_0 = \frac{(1 + 2\gamma \rho^2 + \gamma^2 \rho^2)}{1 - \rho^2} \sigma_e^2 \]

(25) \[\lambda_i = \frac{(1 + \gamma \rho^2)(1 + \gamma)\rho}{1 - \rho^2} \sigma_e^2 \]

(26) \[\lambda_\tau = \rho \lambda_{\tau-1} \text{ for } \tau \geq 2 \]

Given that \(\ln Y_t \) is stationary, for the sales growth rate it is found that

(27) \[E(\ln Y_t - \ln Y_{t-1})^2 = 2E(\ln Y_t)^2 - 2E(\ln Y_t \ln Y_{t-1}) = 2(\lambda_0 - \lambda_i) \]

\[E(\ln Y_t - \ln Y_{t-1})(\ln Y_{t-1} - \ln Y_{t-2}) = 2E(\ln Y_t \ln Y_{t-1}) - E(\ln Y_t \ln Y_{t-2}) \]

\[= 2\lambda_1 - \lambda_0 - \lambda_2 = (2 - \rho)\lambda_1 - \lambda_0 \]

(28) \[E(\ln Y_t - \ln Y_{t-1})(\ln Y_{t-2} - \ln Y_{t-3}) = 2E(\ln Y_t \ln Y_{t-1}) - E(\ln Y_t \ln Y_{t-2}) - E(\ln Y_t \ln Y_{t-3}) \]

\[= 2\lambda_2 - \lambda_1 - \lambda_3 = (2 - 1 - \rho^2)\lambda_1 \]

As a result,

(30) \[Corr(\ln Y_t - \ln Y_{t-1})(\ln Y_{t-1} - \ln Y_{t-2}) = \frac{(2 - \rho)\lambda_1 - \lambda_0}{2(\lambda_0 - \lambda_i)} = \frac{(2 - \rho)(1 + \gamma \rho^2)(1 + \gamma)\rho - (1 + 2\gamma \rho^2 + \gamma^2 \rho^2)}{2(1 + 2\gamma \rho^2 + \gamma^2 \rho^2) - 2(1 + \gamma \rho^2)(1 + \gamma)\rho} \]

(31) \[Corr(\ln Y_t - \ln Y_{t-1})(\ln Y_{t-2} - \ln Y_{t-3}) = \frac{(2\rho - 1 - \rho^2)\lambda_1}{2(\lambda_0 - \lambda_i)} = \frac{(2\rho - 1 - \rho^2)(1 + \gamma \rho^2)(1 + \gamma)\rho}{2(1 + 2\gamma \rho^2 + \gamma^2 \rho^2) - 2(1 + \gamma \rho^2)(1 + \gamma)\rho} \]

Hence, these serial correlations are a function of the parameters of the sales function \(\alpha \) and \(\beta \) through \(\gamma \) and the parameter \(\rho \).

1 The derivations for correlation structure of the sales growth rate are robust to a nonzero mean in \(\ln Y_t \), as employing the growth rate corrects for this.