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A Appendix figures and tables

Figure A.1: Positive cases in our data and on state dashboard
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Notes: Figure plots 7-day moving average of the number of positive cases reported on Indiana’s COVID-19
dashboard (Indiana State Department of Health, 2020), as well as the number of positive cases observed in
our data.
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Figure A.2: Timing of tests relative to hospitalization
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Notes: Figure plots the fraction of hospitalized patients who had a SARS-CoV-2 test on the indicated day
relative to their admission, for non-ICLI hospitalizations, defind as hospitalizations with no diagnosis for
influenza-like or COVID-like illness. Patients who are never tested are in the denominator, and a patient
can be tested on multiple days.
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Table A.1: Weekly test rates, by sample

Sample Population Non-ICLI Clear Cause ICLI

% Tested N % Tested N % Tested N % Tested
Week (1) (2) (3) (4) (5) (6) (7)

13mar 0.001 6,094 0.034 1,363 0.021 1,140 0.294
20mar 0.002 5,173 0.115 1,278 0.065 1,226 0.734
27mar 0.003 4,697 0.155 1,189 0.124 1,342 0.776
03apr 0.003 4,677 0.174 1,273 0.108 1,204 0.754
10apr 0.004 4,841 0.177 1,248 0.114 1,078 0.741
17apr 0.005 5,057 0.194 1,348 0.185 1,191 0.702
24apr 0.006 5,303 0.196 1,431 0.150 1,108 0.621
01may 0.007 5,832 0.302 1,442 0.303 1,195 0.755
08may 0.008 6,187 0.325 1,555 0.273 1,106 0.756
15may 0.009 6,774 0.321 1,576 0.268 1,120 0.776
22may 0.007 6,793 0.315 1,581 0.272 1,059 0.729
29may 0.008 6,949 0.318 1,562 0.291 975 0.715
05jun 0.010 7,359 0.314 1,715 0.291 996 0.753
12jun 0.012 7,554 0.323 1,707 0.251 974 0.728
19jun 0.012 7,437 0.320 1,644 0.279 946 0.759
26jun 0.011 7,434 0.325 1,655 0.291 898 0.739
03jul 0.010 7,441 0.325 1,660 0.289 937 0.719
10jul 0.013 7,591 0.346 1,702 0.340 1,050 0.744
17jul 0.015 7,650 0.340 1,658 0.289 992 0.708
24jul 0.014 7,671 0.311 1,675 0.279 1,028 0.750
31jul 0.015 7,516 0.323 1,634 0.278 1,126 0.690
07aug 0.016 7,722 0.308 1,638 0.278 1,106 0.636
14aug 0.017 7,709 0.321 1,751 0.274 1,048 0.725
21aug 0.016 7,745 0.300 1,770 0.262 1,114 0.679
28aug 0.016 7,733 0.290 1,715 0.247 1,006 0.671
04sep 0.015 7,448 0.299 1,637 0.268 1,015 0.657
11sep 0.016 7,871 0.321 1,717 0.286 1,030 0.637
18sep 0.016 7,857 0.301 1,719 0.246 1,074 0.622
25sep 0.016 7,791 0.310 1,678 0.271 1,146 0.641
02oct 0.018 7,655 0.311 1,713 0.265 1,306 0.647
09oct 0.016 7,476 0.303 1,622 0.256 1,414 0.635
16oct 0.022 7,333 0.343 1,597 0.274 1,457 0.650
23oct 0.023 7,356 0.364 1,603 0.292 1,521 0.689
30oct 0.026 7,379 0.346 1,568 0.311 1,629 0.583
06nov 0.029 7,508 0.360 1,705 0.280 2,126 0.612
13nov 0.032 7,013 0.439 1,579 0.418 2,280 0.624
20nov 0.026 6,268 0.431 1,462 0.405 2,152 0.633
27nov 0.029 6,433 0.475 1,466 0.440 2,151 0.643
04dec 0.022 5,668 0.474 1,217 0.456 1,716 0.668
11dec 0.005 2,284 0.480 426 0.532 689 0.667

Notes: Table reports the weekly test rate for the population, and the number of hospitalizations and test
rate, by type of hospitalizations, weighted to match the population age distribution.. (The population size is
6.64 million in all weeks.) ICLI hospitalizations have at least one diagnosis for influenza-like or COVID-like
illness. Clear cause hospitalizations are hospitalizations for cancer, labor and delivery, AMI, stroke, fracture
or crush, open wound, appendicitis, or accidents (vehicle or other). See Appendix B for definitions.
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Table A.2: Weekly test rates, by sample, not age weighted

Sample Population Non-ICLI Clear Cause ICLI

% Tested N % Tested N % Tested N % Tested
Week (1) (2) (3) (4) (5) (6) (7)

13mar 0.001 6,919 0.034 1,368 0.030 1,143 0.294
20mar 0.002 6,011 0.102 1,281 0.085 1,231 0.726
27mar 0.003 5,546 0.158 1,193 0.142 1,344 0.833
03apr 0.003 5,561 0.173 1,281 0.158 1,207 0.795
10apr 0.004 5,703 0.190 1,250 0.174 1,079 0.772
17apr 0.005 5,914 0.196 1,353 0.217 1,195 0.720
24apr 0.006 6,139 0.196 1,434 0.178 1,110 0.642
01may 0.007 6,711 0.287 1,444 0.328 1,200 0.756
08may 0.008 7,101 0.310 1,556 0.330 1,110 0.746
15may 0.009 7,704 0.322 1,580 0.330 1,128 0.762
22may 0.007 7,717 0.305 1,586 0.308 1,061 0.734
29may 0.009 7,877 0.316 1,569 0.327 982 0.737
05jun 0.010 8,270 0.321 1,721 0.317 1,001 0.744
12jun 0.012 8,432 0.318 1,711 0.310 983 0.702
19jun 0.012 8,313 0.319 1,651 0.319 948 0.694
26jun 0.011 8,381 0.318 1,661 0.332 903 0.708
03jul 0.010 8,367 0.311 1,668 0.321 945 0.705
10jul 0.013 8,547 0.325 1,708 0.341 1,052 0.691
17jul 0.015 8,655 0.327 1,661 0.335 1,006 0.706
24jul 0.015 8,601 0.307 1,680 0.305 1,033 0.712
31jul 0.015 8,505 0.320 1,641 0.315 1,135 0.674
07aug 0.016 8,666 0.304 1,642 0.322 1,108 0.663
14aug 0.017 8,619 0.301 1,755 0.292 1,052 0.649
21aug 0.016 8,707 0.287 1,776 0.293 1,121 0.647
28aug 0.016 8,688 0.284 1,715 0.283 1,010 0.617
04sep 0.015 8,381 0.287 1,647 0.293 1,020 0.635
11sep 0.016 8,860 0.305 1,719 0.308 1,040 0.651
18sep 0.016 8,797 0.297 1,724 0.286 1,075 0.635
25sep 0.016 8,717 0.305 1,687 0.305 1,157 0.624
02oct 0.018 8,585 0.306 1,721 0.310 1,310 0.656
09oct 0.016 8,369 0.302 1,629 0.304 1,422 0.655
16oct 0.022 8,191 0.335 1,599 0.326 1,463 0.638
23oct 0.024 8,190 0.348 1,608 0.341 1,530 0.661
30oct 0.026 8,252 0.332 1,574 0.322 1,639 0.610
06nov 0.029 8,326 0.365 1,710 0.341 2,138 0.640
13nov 0.032 7,900 0.429 1,586 0.465 2,287 0.673
20nov 0.027 7,140 0.418 1,467 0.460 2,159 0.661
27nov 0.030 7,253 0.453 1,473 0.491 2,163 0.671
04dec 0.022 6,384 0.452 1,225 0.491 1,725 0.669
11dec 0.005 2,522 0.406 428 0.467 689 0.597

Notes: Table reports the weekly test rate for the population, and the number of hospitalizations and test
rate, by type of hospitalizations. (The population size is 6.64 million in all weeks.) ICLI hospitalizations
have at least one diagnosis for influenza-like or COVID-like illness. Clear cause hospitalizations are hos-
pitalizations for cancer, labor and delivery, AMI, stroke, fracture or crush, open wound, appendicitis, or
accidents (vehicle or other). See Appendix B for definitions.

4



Table A.3: Weekly bounds on prevalence under test monotonicity, by sample, March-July

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

13mar [0.0001, 0.097] [0.0001, 0.043] [0.0019, 0.043] [0.0001, 0.044] [0.0017, 0.044]
(0.0001, 0.105) (0.0001, 0.066) (0.0010, 0.066) (0.0001, 0.095) (0.0001, 0.095)

20mar [0.0003, 0.154] [0.0003, 0.112] [0.0139, 0.112] [0.0003, 0.110] [0.0107, 0.110]
(0.0003, 0.162) (0.0003, 0.140) (0.0108, 0.140) (0.0003, 0.157) (0.0063, 0.157)

27mar [0.0006, 0.166] [0.0006, 0.159] [0.0286, 0.159] [0.0006, 0.113] [0.0148, 0.113]
(0.0005, 0.173) (0.0005, 0.170) (0.0234, 0.170) (0.0005, 0.166) (0.0089, 0.166)

03apr [0.0006, 0.154] [0.0006, 0.131] [0.0238, 0.131] [0.0006, 0.083] [0.0135, 0.083]
(0.0006, 0.161) (0.0006, 0.157) (0.0190, 0.157) (0.0006, 0.151) (0.0083, 0.151)

10apr [0.0006, 0.149] [0.0006, 0.138] [0.0236, 0.138] [0.0006, 0.149] [0.0132, 0.149]
(0.0006, 0.155) (0.0006, 0.154) (0.0182, 0.154) (0.0006, 0.154) (0.0074, 0.154)

17apr [0.0008, 0.169] [0.0008, 0.051] [0.0115, 0.051] [0.0008, 0.026] [0.0054, 0.026]
(0.0008, 0.175) (0.0008, 0.065) (0.0091, 0.065) (0.0008, 0.048) (0.0027, 0.048)

24apr [0.0008, 0.137] [0.0008, 0.086] [0.0182, 0.086] [0.0008, 0.057] [0.0108, 0.057]
(0.0008, 0.142) (0.0008, 0.119) (0.0142, 0.119) (0.0008, 0.088) (0.0058, 0.088)

01may [0.0009, 0.122] [0.0009, 0.049] [0.0153, 0.049] [0.0009, 0.064] [0.0192, 0.064]
(0.0009, 0.127) (0.0009, 0.070) (0.0113, 0.070) (0.0009, 0.116) (0.0094, 0.116)

08may [0.0008, 0.096] [0.0008, 0.035] [0.0119, 0.035] [0.0008, 0.093] [0.0215, 0.093]
(0.0007, 0.100) (0.0007, 0.050) (0.0078, 0.050) (0.0007, 0.099) (0.0091, 0.099)

15may [0.0008, 0.099] [0.0008, 0.035] [0.0120, 0.035] [0.0008, 0.043] [0.0121, 0.043]
(0.0008, 0.102) (0.0008, 0.043) (0.0098, 0.043) (0.0008, 0.065) (0.0074, 0.065)

22may [0.0006, 0.087] [0.0006, 0.051] [0.0158, 0.051] [0.0006, 0.040] [0.0110, 0.040]
(0.0006, 0.090) (0.0006, 0.069) (0.0113, 0.069) (0.0006, 0.063) (0.0067, 0.063)

29may [0.0006, 0.073] [0.0006, 0.025] [0.0083, 0.025] [0.0006, 0.022] [0.0070, 0.022]
(0.0006, 0.076) (0.0006, 0.038) (0.0058, 0.038) (0.0006, 0.038) (0.0032, 0.038)

05jun [0.0006, 0.059] [0.0006, 0.022] [0.0073, 0.022] [0.0006, 0.021] [0.0064, 0.021]
(0.0006, 0.061) (0.0006, 0.028) (0.0055, 0.028) (0.0006, 0.035) (0.0023, 0.035)

12jun [0.0005, 0.045] [0.0005, 0.022] [0.0067, 0.022] [0.0005, 0.018] [0.0053, 0.018]
(0.0005, 0.047) (0.0005, 0.036) (0.0040, 0.036) (0.0005, 0.031) (0.0022, 0.031)

19jun [0.0006, 0.051] [0.0006, 0.014] [0.0047, 0.014] [0.0006, 0.016] [0.0046, 0.016]
(0.0005, 0.053) (0.0005, 0.018) (0.0032, 0.018) (0.0005, 0.029) (0.0013, 0.029)

26jun [0.0006, 0.060] [0.0006, 0.022] [0.0070, 0.022] [0.0006, 0.021] [0.0071, 0.021]
(0.0006, 0.062) (0.0006, 0.037) (0.0040, 0.037) (0.0006, 0.033) (0.0037, 0.033)

03jul [0.0007, 0.069] [0.0007, 0.015] [0.0049, 0.015] [0.0007, 0.033] [0.0088, 0.033]
(0.0007, 0.071) (0.0007, 0.026) (0.0030, 0.026) (0.0007, 0.067) (0.0027, 0.067)

10jul [0.0009, 0.067] [0.0009, 0.026] [0.0086, 0.026] [0.0009, 0.020] [0.0067, 0.020]
(0.0009, 0.069) (0.0009, 0.038) (0.0054, 0.038) (0.0009, 0.032) (0.0033, 0.032)

17jul [0.0010, 0.069] [0.0010, 0.011] [0.0041, 0.011] [0.0010, 0.012] [0.0042, 0.012]
(0.0010, 0.071) (0.0010, 0.015) (0.0029, 0.015) (0.0010, 0.021) (0.0016, 0.021)

24jul [0.0010, 0.072] [0.0010, 0.019] [0.0064, 0.019] [0.0010, 0.021] [0.0065, 0.021]
(0.0010, 0.074) (0.0010, 0.024) (0.0047, 0.024) (0.0010, 0.033) (0.0032, 0.033)

31jul [0.0011, 0.072] [0.0011, 0.034] [0.0104, 0.034] [0.0011, 0.052] [0.0110, 0.052]
(0.0010, 0.074) (0.0010, 0.052) (0.0067, 0.052) (0.0010, 0.073) (0.0041, 0.073)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. Hosp-M means hosptilalization monotonicity, and
Hosp-I means hospitalization independence. Hospitalized samples weighted to match the population age
distribution. See Table A.1 for sample definitions. Bounds are in brackets, 95% confidence intervals in
parentheses.
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Table A.4: Weekly bounds on prevalence under test monotonicity, by sample, August-
December

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

07aug [0.0010, 0.067] [0.0010, 0.032] [0.0087, 0.032] [0.0010, 0.020] [0.0065, 0.020]
(0.0010, 0.068) (0.0010, 0.048) (0.0054, 0.048) (0.0010, 0.033) (0.0032, 0.033)

14aug [0.0010, 0.059] [0.0010, 0.022] [0.0070, 0.022] [0.0010, 0.059] [0.0173, 0.059]
(0.0010, 0.060) (0.0010, 0.033) (0.0043, 0.033) (0.0010, 0.060) (0.0079, 0.060)

21aug [0.0010, 0.060] [0.0010, 0.022] [0.0066, 0.022] [0.0010, 0.041] [0.0098, 0.041]
(0.0010, 0.062) (0.0010, 0.033) (0.0042, 0.033) (0.0010, 0.061) (0.0038, 0.061)

28aug [0.0010, 0.062] [0.0010, 0.016] [0.0052, 0.016] [0.0010, 0.012] [0.0035, 0.012]
(0.0010, 0.063) (0.0010, 0.021) (0.0038, 0.021) (0.0010, 0.022) (0.0013, 0.022)

04sep [0.0009, 0.057] [0.0009, 0.016] [0.0049, 0.016] [0.0009, 0.015] [0.0042, 0.015]
(0.0008, 0.058) (0.0008, 0.021) (0.0036, 0.021) (0.0008, 0.025) (0.0020, 0.025)

11sep [0.0009, 0.053] [0.0009, 0.016] [0.0053, 0.016] [0.0009, 0.014] [0.0043, 0.014]
(0.0009, 0.055) (0.0009, 0.025) (0.0032, 0.025) (0.0009, 0.022) (0.0021, 0.022)

18sep [0.0009, 0.058] [0.0009, 0.016] [0.0051, 0.016] [0.0009, 0.022] [0.0064, 0.022]
(0.0009, 0.059) (0.0009, 0.021) (0.0036, 0.021) (0.0009, 0.036) (0.0030, 0.036)

25sep [0.0012, 0.070] [0.0012, 0.019] [0.0064, 0.019] [0.0012, 0.018] [0.0061, 0.018]
(0.0011, 0.072) (0.0011, 0.024) (0.0046, 0.024) (0.0011, 0.029) (0.0026, 0.029)

02oct [0.0014, 0.081] [0.0014, 0.018] [0.0058, 0.018] [0.0014, 0.024] [0.0065, 0.024]
(0.0014, 0.083) (0.0014, 0.023) (0.0044, 0.023) (0.0014, 0.038) (0.0029, 0.038)

09oct [0.0017, 0.101] [0.0017, 0.027] [0.0086, 0.027] [0.0017, 0.021] [0.0072, 0.021]
(0.0016, 0.102) (0.0016, 0.040) (0.0064, 0.040) (0.0016, 0.031) (0.0038, 0.031)

16oct [0.0024, 0.110] [0.0024, 0.029] [0.0103, 0.029] [0.0024, 0.022] [0.0073, 0.022]
(0.0024, 0.111) (0.0024, 0.038) (0.0078, 0.038) (0.0024, 0.033) (0.0039, 0.033)

23oct [0.0031, 0.132] [0.0031, 0.030] [0.0115, 0.030] [0.0031, 0.047] [0.0154, 0.047]
(0.0031, 0.134) (0.0031, 0.037) (0.0095, 0.037) (0.0031, 0.070) (0.0102, 0.070)

30oct [0.0042, 0.162] [0.0042, 0.038] [0.0136, 0.038] [0.0042, 0.057] [0.0190, 0.057]
(0.0041, 0.163) (0.0041, 0.048) (0.0104, 0.048) (0.0041, 0.093) (0.0098, 0.093)

06nov [0.0055, 0.189] [0.0055, 0.056] [0.0213, 0.056] [0.0055, 0.069] [0.0230, 0.069]
(0.0054, 0.191) (0.0054, 0.067) (0.0180, 0.067) (0.0054, 0.090) (0.0170, 0.090)

13nov [0.0059, 0.181] [0.0059, 0.060] [0.0264, 0.060] [0.0059, 0.115] [0.0450, 0.115]
(0.0058, 0.183) (0.0058, 0.076) (0.0216, 0.076) (0.0058, 0.178) (0.0312, 0.178)

20nov [0.0052, 0.196] [0.0052, 0.080] [0.0352, 0.080] [0.0052, 0.160] [0.0519, 0.160]
(0.0052, 0.198) (0.0052, 0.099) (0.0287, 0.099) (0.0052, 0.197) (0.0322, 0.197)

27nov [0.0066, 0.225] [0.0066, 0.062] [0.0306, 0.062] [0.0066, 0.100] [0.0457, 0.100]
(0.0066, 0.227) (0.0066, 0.075) (0.0253, 0.075) (0.0066, 0.149) (0.0332, 0.149)

04dec [0.0047, 0.213] [0.0047, 0.048] [0.0243, 0.048] [0.0047, 0.060] [0.0299, 0.060]
(0.0046, 0.215) (0.0046, 0.056) (0.0206, 0.056) (0.0046, 0.078) (0.0214, 0.078)

11dec [0.0010, 0.195] [0.0010, 0.056] [0.0277, 0.056] [0.0010, 0.086] [0.0480, 0.086]
(0.0010, 0.199) (0.0010, 0.084) (0.0143, 0.084) (0.0010, 0.177) (0.0117, 0.177)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonic-
ity, as well as the indicated representativeness assumption. Hospitalized samples weighted to match the
population age distribution. See Table A.1 for sample definitions. Bounds are in brackets, 95% confidence
intervals in parentheses.
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Table A.5: Weekly bounds on prevalence under test monotonicity, by sample, not age-
weighted, March-July

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

13mar [0.0001, 0.111] [0.0001, 0.090] [0.0034, 0.090] [0.0001, 0.073] [0.0022, 0.073]
(0.0001, 0.120) (0.0001, 0.113) (0.0020, 0.113) (0.0001, 0.114) (0.0001, 0.114)

20mar [0.0003, 0.181] [0.0003, 0.159] [0.0189, 0.159] [0.0003, 0.174] [0.0149, 0.174]
(0.0003, 0.187) (0.0003, 0.184) (0.0155, 0.184) (0.0003, 0.186) (0.0089, 0.186)

27mar [0.0006, 0.197] [0.0006, 0.197] [0.0390, 0.197] [0.0006, 0.147] [0.0210, 0.147]
(0.0005, 0.202) (0.0005, 0.201) (0.0338, 0.201) (0.0005, 0.196) (0.0128, 0.196)

03apr [0.0006, 0.178] [0.0006, 0.162] [0.0331, 0.162] [0.0006, 0.163] [0.0259, 0.163]
(0.0006, 0.183) (0.0006, 0.180) (0.0285, 0.180) (0.0006, 0.182) (0.0170, 0.182)

10apr [0.0006, 0.168] [0.0006, 0.134] [0.0300, 0.134] [0.0006, 0.106] [0.0184, 0.106]
(0.0006, 0.173) (0.0006, 0.156) (0.0257, 0.156) (0.0006, 0.149) (0.0109, 0.149)

17apr [0.0009, 0.188] [0.0009, 0.085] [0.0194, 0.085] [0.0009, 0.058] [0.0126, 0.058]
(0.0008, 0.191) (0.0008, 0.101) (0.0154, 0.101) (0.0008, 0.088) (0.0070, 0.088)

24apr [0.0008, 0.147] [0.0008, 0.110] [0.0249, 0.110] [0.0008, 0.086] [0.0154, 0.086]
(0.0008, 0.150) (0.0008, 0.129) (0.0208, 0.129) (0.0008, 0.123) (0.0098, 0.123)

01may [0.0009, 0.126] [0.0009, 0.058] [0.0190, 0.058] [0.0009, 0.057] [0.0187, 0.057]
(0.0009, 0.129) (0.0009, 0.069) (0.0152, 0.069) (0.0009, 0.078) (0.0116, 0.078)

08may [0.0008, 0.098] [0.0008, 0.039] [0.0137, 0.039] [0.0008, 0.047] [0.0154, 0.047]
(0.0008, 0.100) (0.0008, 0.048) (0.0109, 0.048) (0.0008, 0.067) (0.0093, 0.067)

15may [0.0008, 0.094] [0.0008, 0.045] [0.0164, 0.045] [0.0008, 0.057] [0.0190, 0.057]
(0.0008, 0.097) (0.0008, 0.053) (0.0136, 0.053) (0.0008, 0.078) (0.0129, 0.078)

22may [0.0006, 0.084] [0.0006, 0.047] [0.0162, 0.047] [0.0006, 0.053] [0.0164, 0.053]
(0.0006, 0.086) (0.0006, 0.055) (0.0132, 0.055) (0.0006, 0.074) (0.0107, 0.074)

29may [0.0006, 0.069] [0.0006, 0.029] [0.0102, 0.029] [0.0006, 0.027] [0.0090, 0.027]
(0.0006, 0.071) (0.0006, 0.036) (0.0079, 0.036) (0.0006, 0.042) (0.0050, 0.042)

05jun [0.0006, 0.056] [0.0006, 0.026] [0.0092, 0.026] [0.0006, 0.028] [0.0087, 0.028]
(0.0006, 0.058) (0.0006, 0.032) (0.0072, 0.032) (0.0006, 0.042) (0.0047, 0.042)

12jun [0.0005, 0.041] [0.0005, 0.018] [0.0064, 0.018] [0.0005, 0.023] [0.0070, 0.023]
(0.0005, 0.042) (0.0005, 0.024) (0.0046, 0.024) (0.0005, 0.036) (0.0035, 0.036)

19jun [0.0006, 0.049] [0.0006, 0.017] [0.0062, 0.017] [0.0006, 0.015] [0.0049, 0.015]
(0.0006, 0.050) (0.0006, 0.022) (0.0044, 0.022) (0.0006, 0.027) (0.0019, 0.027)

26jun [0.0006, 0.058] [0.0006, 0.020] [0.0070, 0.020] [0.0006, 0.031] [0.0103, 0.031]
(0.0006, 0.060) (0.0006, 0.025) (0.0051, 0.025) (0.0006, 0.046) (0.0058, 0.046)

03jul [0.0007, 0.067] [0.0007, 0.015] [0.0052, 0.015] [0.0007, 0.026] [0.0084, 0.026]
(0.0007, 0.069) (0.0007, 0.020) (0.0037, 0.020) (0.0007, 0.041) (0.0037, 0.041)

10jul [0.0009, 0.067] [0.0009, 0.020] [0.0074, 0.020] [0.0009, 0.024] [0.0082, 0.024]
(0.0009, 0.069) (0.0009, 0.026) (0.0056, 0.026) (0.0009, 0.037) (0.0041, 0.037)

17jul [0.0010, 0.069] [0.0010, 0.017] [0.0061, 0.017] [0.0010, 0.020] [0.0066, 0.020]
(0.0010, 0.071) (0.0010, 0.022) (0.0044, 0.022) (0.0010, 0.032) (0.0030, 0.032)

24jul [0.0010, 0.072] [0.0010, 0.027] [0.0093, 0.027] [0.0010, 0.039] [0.0119, 0.039]
(0.0010, 0.073) (0.0010, 0.034) (0.0073, 0.034) (0.0010, 0.057) (0.0072, 0.057)

31jul [0.0011, 0.071] [0.0011, 0.028] [0.0100, 0.028] [0.0011, 0.035] [0.0110, 0.035]
(0.0010, 0.073) (0.0010, 0.034) (0.0078, 0.034) (0.0010, 0.049) (0.0063, 0.049)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. See Table A.1 for sample definitions. Bounds are in
brackets, 95% confidence intervals in parentheses.
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Table A.6: Weekly bounds on prevalence under test monotonicity, by sample, not age-
weighted, August-December

Sample Pop Non-ICLI Clear cause

Representatives assumption Hosp-M Hosp-I Hosp-M Hosp-I
Week (1) (2) (3) (4) (5)

07aug [0.0011, 0.067] [0.0011, 0.023] [0.0079, 0.023] [0.0011, 0.030] [0.0098, 0.030]
(0.0010, 0.069) (0.0010, 0.029) (0.0059, 0.029) (0.0010, 0.046) (0.0054, 0.046)

14aug [0.0010, 0.061] [0.0010, 0.023] [0.0077, 0.023] [0.0010, 0.047] [0.0137, 0.047]
(0.0010, 0.062) (0.0010, 0.029) (0.0058, 0.029) (0.0010, 0.061) (0.0087, 0.061)

21aug [0.0010, 0.064] [0.0010, 0.022] [0.0071, 0.022] [0.0010, 0.031] [0.0090, 0.031]
(0.0010, 0.065) (0.0010, 0.027) (0.0054, 0.027) (0.0010, 0.046) (0.0054, 0.046)

28aug [0.0010, 0.066] [0.0010, 0.022] [0.0069, 0.022] [0.0010, 0.021] [0.0058, 0.021]
(0.0010, 0.068) (0.0010, 0.028) (0.0051, 0.028) (0.0010, 0.033) (0.0024, 0.033)

04sep [0.0009, 0.060] [0.0009, 0.023] [0.0075, 0.023] [0.0009, 0.025] [0.0073, 0.025]
(0.0009, 0.061) (0.0009, 0.030) (0.0058, 0.030) (0.0009, 0.040) (0.0035, 0.040)

11sep [0.0009, 0.055] [0.0009, 0.019] [0.0064, 0.019] [0.0009, 0.030] [0.0093, 0.030]
(0.0009, 0.056) (0.0009, 0.023) (0.0048, 0.023) (0.0009, 0.046) (0.0052, 0.046)

18sep [0.0009, 0.059] [0.0009, 0.021] [0.0071, 0.021] [0.0009, 0.032] [0.0093, 0.032]
(0.0009, 0.061) (0.0009, 0.027) (0.0052, 0.027) (0.0009, 0.049) (0.0047, 0.049)

25sep [0.0012, 0.072] [0.0012, 0.024] [0.0082, 0.024] [0.0012, 0.031] [0.0095, 0.031]
(0.0011, 0.073) (0.0011, 0.031) (0.0062, 0.031) (0.0011, 0.048) (0.0052, 0.048)

02oct [0.0015, 0.082] [0.0015, 0.026] [0.0090, 0.026] [0.0015, 0.032] [0.0099, 0.032]
(0.0014, 0.084) (0.0014, 0.033) (0.0071, 0.033) (0.0014, 0.047) (0.0053, 0.047)

09oct [0.0017, 0.102] [0.0017, 0.034] [0.0115, 0.034] [0.0017, 0.051] [0.0154, 0.051]
(0.0016, 0.104) (0.0016, 0.042) (0.0094, 0.042) (0.0016, 0.070) (0.0095, 0.070)

16oct [0.0024, 0.111] [0.0024, 0.038] [0.0140, 0.038] [0.0024, 0.046] [0.0150, 0.046]
(0.0024, 0.113) (0.0024, 0.046) (0.0115, 0.046) (0.0024, 0.064) (0.0097, 0.064)

23oct [0.0032, 0.134] [0.0032, 0.047] [0.0181, 0.047] [0.0032, 0.069] [0.0237, 0.069]
(0.0031, 0.135) (0.0031, 0.055) (0.0148, 0.055) (0.0031, 0.091) (0.0165, 0.091)

30oct [0.0042, 0.164] [0.0042, 0.043] [0.0161, 0.043] [0.0042, 0.067] [0.0217, 0.067]
(0.0042, 0.165) (0.0042, 0.052) (0.0132, 0.052) (0.0042, 0.088) (0.0145, 0.088)

06nov [0.0055, 0.191] [0.0055, 0.071] [0.0288, 0.071] [0.0055, 0.105] [0.0358, 0.105]
(0.0055, 0.193) (0.0055, 0.080) (0.0253, 0.080) (0.0055, 0.132) (0.0272, 0.132)

13nov [0.0059, 0.184] [0.0059, 0.066] [0.0317, 0.066] [0.0059, 0.114] [0.0532, 0.114]
(0.0058, 0.186) (0.0058, 0.074) (0.0278, 0.074) (0.0058, 0.139) (0.0436, 0.139)

20nov [0.0053, 0.198] [0.0053, 0.093] [0.0442, 0.093] [0.0053, 0.116] [0.0534, 0.116]
(0.0052, 0.200) (0.0052, 0.103) (0.0387, 0.103) (0.0052, 0.139) (0.0420, 0.139)

27nov [0.0067, 0.227] [0.0067, 0.084] [0.0426, 0.084] [0.0067, 0.142] [0.0703, 0.142]
(0.0066, 0.229) (0.0066, 0.093) (0.0375, 0.093) (0.0066, 0.169) (0.0577, 0.169)

04dec [0.0047, 0.214] [0.0047, 0.068] [0.0344, 0.068] [0.0047, 0.108] [0.0534, 0.108]
(0.0047, 0.216) (0.0047, 0.077) (0.0298, 0.077) (0.0047, 0.133) (0.0412, 0.133)

11dec [0.0010, 0.196] [0.0010, 0.051] [0.0228, 0.051] [0.0010, 0.085] [0.0399, 0.085]
(0.0010, 0.201) (0.0010, 0.064) (0.0177, 0.064) (0.0010, 0.120) (0.0219, 0.120)

Notes: Table reports weekly bounds on COVID prevalence in the indicated sample under test monotonicity,
as well as the indicated representativeness assumption. See Table A.1 for sample definitions. Bounds are in
brackets, 95% confidence intervals in parentheses.
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Table A.7: Demographics and test rates among hospitalized patients, by group

Number of Age

Group Admissions Female Newborn 0-17 18-29 30-49 50-64 65-74 >74

All 781,587 0.555 0.080 0.028 0.105 0.181 0.228 0.182 0.196
Has diagnosis 355,425 0.557 0.100 0.026 0.112 0.178 0.214 0.173 0.198
ICLI 49,904 0.493 0.005 0.023 0.037 0.139 0.269 0.239 0.287
Non-ICLI 305,521 0.568 0.115 0.027 0.124 0.184 0.205 0.162 0.183
Clear cause 61,682 0.592 0.003 0.033 0.165 0.175 0.195 0.179 0.249
Cancer 9,585 0.465 0.001 0.053 0.026 0.122 0.322 0.284 0.192
Labor/delivery 13,304 0.995 0.009 0.023 0.611 0.357 0.000 0.000 0.000
AMI 8,624 0.405 0.000 0.000 0.007 0.112 0.315 0.265 0.301
Stroke 8,297 0.487 0.001 0.004 0.011 0.092 0.269 0.256 0.368
Fracture 13,718 0.546 0.003 0.034 0.063 0.128 0.178 0.187 0.408
Open wound 3,642 0.420 0.002 0.047 0.097 0.197 0.224 0.167 0.266
Appendicitis 1,961 0.465 0.000 0.224 0.199 0.274 0.181 0.084 0.038
Vehicle accident 1,944 0.356 0.001 0.090 0.216 0.297 0.195 0.119 0.082
Other accident 9,782 0.541 0.003 0.033 0.034 0.082 0.154 0.208 0.486

Notes: Table reports the number and age distribution of admissions, for different categories of admissions,
over the time period March 13, 2020 through June 18, 2020. See Appendix B for definitions of the different
causes of admissions (Cancer-other accident).
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B Defining causes of admissions

This section provides more details on our definition of ICLI, non-ICIL, and “clear

cause” hospitalization, listing the ICD-10 codes used to define each.

Following Armed Forces Health Surveillance Center (2015), the codes for influenza-

like illness are B97.89, H66.9, H66.90, H66.91 H66.92, H66.93, J00, J01.9, J01.90, J06.9, J09,

J09.X, J09.X1, J09.2, J09.X3, J09.X9, J10, J10.0, J10.00, J10.01, J10.08, J10.1, J10.2, J10.8, J10.81,

J10.82, J10.83, J10.89, J11, J11.0, J11.00, J11.08, J11.1, J11.2, J11.8, J11.81, J11.82, J11.83, J11.89,

J12.89, J12.9, J18, J18.1, J18.8, J18.9, J20.9, J40, R05, and R50.9. We say a hospitalizaiton is

for an influenza-like illness if it has any of these diagnosis codes in any position. We say

a hospitalization is for a COVID-like illness if it has any ICD-10 code among those that is

among the CDC’s lists of diagnosis codes for COVID-19 Center for Disease Control and

Prevention (2020). These codes are J12.89, J20.8, J22, J40, J80, J98.8, O95.5, R05, R06.02,

R50.9, U07.1, Z03.818, Z11.58, and Z20.828.

We define ICLI-related hospitalizations as ones with at least one ILI or CLI diagnosis

code. We define non-ICLI related hospitalizations as hospitalized with diagnosis codes,

but no ILI or CLI code.

We also define “clear cause” hospitalizations. These are hospitalizations for labor and

delivery, AMI, stroke, fractures and crushes, wounds, vehicle accidents, other accidents,

appendicitis, or cancer. With the exception of cancer, we define a hospitalization as be-

longing to one of these groups if it has any diagnosis codes for that group, listed below.

Cancer is treated differently because it can be a comorbidity. We say a hospitalization is

for cancer if a cancer diagnosis (listed below) is an admitting diagnosis, the primary final
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diagnosis, or if chemotherapy diagnosis is present. We use the following ICD-10 codes.

• AMI I21, I22.

• Appendicitis K35-K38.

• Cancer C00-C97 (in primary or admitting diagnosis), or Z51.0-Z51.2 (in any posi-

tion).

• Fracture/Crush S02, S12, S22, S32, S42, S52, S62, S72, S82, S92, T02, S07, S17, S37,

S47, S57,S67, S77, S87, S97, T07.

• Labor and delivery O60-O75, O80-O84.

• Other accidents W00-W99, X00-X59.

• Stroke I61-I64.

• Vehicle accident V01-V99.

• Wound S01, S11, S21, S31, S41, S51, S61, S71, S81, S91, T01.
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C Calculating negative predictive values with test-retest

data

Setup and identification Here we show how to use data on multiple tests to simulta-

neously identify prevalence and test error rates, and how to use this information to obtain

the negative predictive value (NPV) of at test under a narrow set of assumptions. Assume

in particular that people have been tested exactly twice, with R1i the outcome of the first

test and R2i the outcome of the second test for person i. Let Ci be person i’s true infection

status, which we assume is fixed between the tests. Let p = Pr(Ci = 1) be the prevalence

of active SARS-CoV-2 infections in this twice-tested population.

Test outcomes may differ from true infection status because of test errors. In general,

therefore, there are four possible sequences of test outcomes: (0, 0), (0, 1), (1, 0), (1, 1). We

let Pab = Pr(R1i = a,R2i = b) for (a, b) ∈ {0, 1}2.

We make three strong assumptions to simplify the analysis.

Assumption 4. The specificity of the test is 1. That is, β = Pr(Rji = 0|Ci = 0) = 1.

Assumption 5. The sensitivity of the test, α = Pr(Rji = 1|Ci = 1), does not depend on the

initial test result.

Assumption 6. Retesting is random, i.e. independent of R1i and Ci.

Assumption 4 is the weakest of these assumptions. It implies that there are no false

positives, which is consistent with typical practice (UCSF Health Hospital Epidemiology

and Infection Prevention, 2020). The remaining assumptions are stronger. Assumption

5 says that the test errors are independent of the initial test result. It would be violated,
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for example, if false negatives are more common for patients with high levels of mucus,

and mucus levels are correlated across test results. Assumption 6 says that retesting rates

do not depend on possible testing errors. We would expect this condition to fail if highly

symptomatic people with negative tests are especially likely to test negative. We view

this assumption as the most suspect.

Under these assumptions, the test outcome probabilities Pab simplify considerably.

Since the probabilities sum to one, and the assumptions imply that P10 = P01, the only

non-redundant probabilities are:

P00 = (1− p) + p(1− α)2

P11 = pα2.

We can observe P00 and P11. Solving for the unknowns p and α, we have

p =
(P00 − P11 − 1)2

4P11

α =
2P11

1− P00 + P11

This shows how to get p and α from two tests, and the assumption that specificity (β)

equals 1. Our goal is to find the negative predictive value (NPV), which can be computed

given knowledge of α, β and p. In general, for a single test NPV = Pr(Ci = 0|Ri = 0).

Applying Bayes rule shows that:
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NPV =
1− p

p(1− α) + (1− p)

Results To implement this approach, we construct a sample of all people who are

tested on a given day, not tested the previous day, and then tested again in the next day.

There are 835,195 such test pairs. We find P00 = 0.884 and P11 = 0.113. Nearly all the

mass is on the diagonals; test results switch less than 1% of the time. This fact, together

with the assumption that specificity is equal to 1, implies very low false negative rates.

Plugging these values into our formula, we have p = 0.116 and α = 0.987, which implies

NPV = 0.998. Using instead, all people who are retested once within a three day period,

we find similar results: p = 0.118, α = 0.972, NPV = 0.996.

We emphasize that these estimates are valid for the twice-tested population and under

assumptions 4-6, in particular, random retesting. The prevalence estimate is the preva-

lence among people tested twice, not the population prevalence. And it is only a valid

estimate under assumptions 1-3. In reality, it is likely that retests are most common among

suspected false negatives (i.e. when a highly symptomatic patient tests negative). We see

some evidence for this: P01 = 0.0013 and P10 = 0.0016, a slight but significant differ-

ence implying that negative-then-positive is slightly more common than positive-than-

negative, inconsistent with the random retesting assumption. We therefore do not view

our estimates of prevalence and sensitivity as definitive; rather we think of the sensitivity

estimate as a lower bound on sensitivity, because we have selected a retest sample which

has a disproportionate number of false negatives. As NPV is increasing in sensitivity, α,

our implied estimate of 1−NPV is likely an upper bound on 1−NPV .
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D Measurement Error In Testing

Virological tests for the presence of SARS-CoV-2 may not be perfectly accurate, and

so far there are no detailed studies of the performance of the PCR tests that Indiana is

using to test people for SARS-CoV-2. To clarify how error-ridden tests complicate our

prevalence estimates, we augment the notation to distinguish between test results and

virological status. We continue to use Cit and Dit to represent a person’s true infection

and testing status at date t. But now we introduce Rit, which is a binary measure set

to 1 if the person tests positive and 0 if the person tests negative. Using this notation,

Pr(Cit = 1|Dit = 1, Rit = 1) is called the Positive Predictive Value (PPV) of the test among

people who are tested and who test positive. Pr(Cit = 0|Dit = 1, Rit = 0) is called the

Negative Predictive Value (NPV) among people who are tested and who test negative.

1 − NPV = Pr(Cit = 1|Dit = 1, Rit = 0) is the fraction of people who test negative who

are actually infected with SARS-CoV-2.

Our initial worst case bounds assumed no test errors. Relaxing that assumption yields

a different set of upper and lower bounds on prevalence. Following Manski and Molinari

(2020), we assume that (i) PPV = 1 so that none of the positive tests are false, but (ii)

Pr(Cit = 1|Dit = 1, Rit = 0) ∈ [λl, λu]. The second condition imposes a bound on 1−NPV ,

which is the fraction of people who test negative who are actually infected. Under these

two restrictions, the new worst case bounds work out to:

Lw,λ = Lw + λlPr(Rit = 0|Dit = 1)Pr(Dit = 1)

Uw,λ = Uw + λuPr(Rit = 0|Dit = 1)Pr(Dit = 1)
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Allowing for test errors increases the worst case lower bound by the best-case frac-

tion of missing positives, and increases the worst case upper bound by the worst-case

fraction of missing positives. Similar expressions hold for prevalence bounds under test

monotonicity and other independence assumptions.

The upshot is that knowledge of test accuracy is important for efforts to learn about

prevalence. In their study of the cumulative prevalence of SARS-CoV-2 infections, Manski

and Molinari (2020) computed upper and lower bounds on prevalence under the assump-

tion that λl = .1 and λu = .4, citing Peci et al. (2014). Manski and Molinari (2020) view this

choice of .1 ≤ 1 − NPV ≤ .4 as an expression of scientific uncertainty about test errors,

and they refer to the resulting prevalence bounds as “illustrative.” However, the structure

of the test error bounds makes it clear that assumptions about the numerical magnitude

of test errors have inferential consequences. For example, setting λu = .4 implies that,

regardless of the outcome of the test, at least 40 percent of the people who are tested for

SARS-CoV-2 are infected.

Although there is little published evidence on the properties of the SARS-CoV-2 PCR

test, previous research suggests that PCR test errors are uncommon in other settings. For

example, Peci et al. (2014) study the performance of rapid influenza tests using PCR-based

tests as a gold standard. PCR tests are used as a gold standard because they are expected

to have very high PPV and NPV.

To shed more light on test errors, we constructed a sample of people who are tested

and retested in a short interval, specifically people who were (i) tested on day t, (ii) not

tested on day t− 1, and (iii) were tested again on day t+ 1. We show in Appendix C how

these data can be used to estimate error rates, under assumptions of random retesting
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and no false positives. Our data include 835,000 test-retest events. Using R1i and R2i to

represent the results of a person’s first and second test, we found that Pr(R1i = 1, R2i =

1) = .11 and Pr(R1i = 0, R2i = 0) = .88 among the people in the twice-tested sample.

The two tests were discordant for less than 1 percent of the twice-tested sample. These

results imply a negative predictive value of 99.8 percent.

This estimate of NPV depends on our assumptions of random retesting and no false

positives. While the no false positive assumption appears plausible, random retesting is

not necessarily satisfied. In particular, a patient with a suspected COVID case who ini-

tially tests negative may be retested; this selective retesting would bias us towards finding

false negatives. Another reason for retesting is delays in processing results. If a patient

was tested prior to a planned hospitalization, and the result is not available at the time of

the hospitalization, the attending physician may order an in-hospital test, which would be

available within hours. This type of retesting is less likely to lead to bias. As we explain

in Appendix C, we can test for selection into retesting by looking for symmetry in test

results. Under random retesting (and no false positives), the sequences “positive-then-

negative” and “negative-then-positive” should be equally likely. In practice we find that

“negative-then-positive” is slightly more common, meaning that our test-retest sample

likely disproportionately selects people with initial false negatives.

Overall, we think that a plausible value for λl is nearly zero, and a plausible value

for λu is 0.005. Accounting for test errors in this range would have almost no effect on

the upper and lower bounds reported in the paper. Test-retest data are potentially in-

formative about test errors, but a limitation of is that retested people are not necessarily

representative of the population.
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E Small bias from excluding ICLI-hospitalizations

Our main sample uses non-ICLI hospitalizations to bound COVID prevalence in the

general population. This approach therefore yields bounds on the prevalence of non-

severe COVID-19, where “non-severe” means “not severe enough to induce a COVID-

related hospitalization.” These bounds are of course biased for bounds on overall COVID-

19 prevalence. However this bias is quite small, small enough that it is unlikely to be

decision relevant. We show this in two separate arguments.

To begin we abuse notation slightly and let H in this section be an indicator for an

ICLI-related hospitalization, rather than any hospitalization. Both arguments start from

the observation that COVID prevalence is equal to COVID prevalence among the hospi-

talized population plus its prevalence among the unhospitalized population:

Pr(C = 1) = Pr(C = 1, H = 1) + Pr(C = 1, H = 0).

Since our main sample is limited to non-ICLI hospitalizations, our bounds can be inter-

preted as bounds on Pr(C = 1, H = 0), and the bias is (at most) the bias from omitting

Pr(C = 1, H = 1).

E.1 Argument from rarity of ICLI-related hospitalizations

Our first argument that this bias is small is to observe that Pr(C = 1, H = 1) ≤

Pr(H = 1). That is, the overall rate of ICLI-related hospitalizations in the population is

an upper bound on the fraction of people in the population who are COVID-19 positive
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and have an ICLI-related hospitalization. Fortunately, Pr(H = 1) is nearly observable in

our data.

In particular, we don’t quite observe Pr(H = 1) because not all hospitals report di-

agnosis information. We can therefore bound Pr(H = 1) by assuming that when di-

agnosis information is not reported, H = 1. Taking this approach, Figure E.1 shows

Pr(H = 1) in our data. This is the weekly count of ICLI-related hospitalizations, scaled

by the population of Indiana. An alternative approach, also shown in Figure E.1 is to

measure ICLI-related hospitalizations as the total number of hospitalizations, scaled by

the share of ICLI-related hospitalizations among hospitalizations with diagnoses. We see

that Pr(H = 1) is always less than 0.3%, typically less than 0.2%, using the more conser-

vative bound. Thus the population prevalence of COVID-19 exceeds our upper bound by

at most 0.3%. A more precise estimate of the bias uses the estimated Pr(H = 1) from ob-

served diagnoses, about 0.05 percent, and uses Figure 3 to infer that Pr(C = 1|H = 1) is

typically less than 50 percent, and so the bias from excluding ICLI related hospitalizations

is likely less than 0.025 percent, that is, about 1700 cases out of a population of 6.8 million.

Reassuringly, this number is similar to the average reported COVID-19 hospitalizations

in the state of Indiana in 2020 (Indiana State Department of Health, 2020).13

E.2 Argument from low infection hospitalization rate

A second argument shows, similarly, that there is little bias from conditioning on ICLI-

unrelated hospitalizations. This argument is based on the fact that the infection hospital-

13 Because hospitalizations last a few days, our weekly admission count is comparable to the state’s daily
count of then umber of people in the hospital.
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ization rate, Pr(H = 1|C = 1), is known to be low.

After substituting Pr(H = 1|C = 1)Pr(C = 1) for Pr(C = 1, H = 1) in the equation

above, and a bit of algebra, we have

Pr(C = 1)
Pr(C = 1, H = 0)

1− Pr(H = 1|C = 1)
.

By focusing on ICLI-unrelated hospitalizations, we bound the numerator. The expression

above shows that our bound is off by a factor of at most (1 − Pr(H = 1|C = 1))−1. If

Pr(H = 1|C = 1) were known to be low, then the bias in our bound would be low as well.

The available evidence indicates that the infection hospitalization rate – Pr(H = 1|C =

1) – is small, not more than 10 percent in unvaccinated populations, and likely smaller.

Menachemi et al. (2021) estimate 2.1 percent in Indiana (excluding nursing homes) and

Mahajan et al. (2021) estimate 7 percent in Connecticut, both using random sample testing

to establish population prevalence and treating the number of hospitalizations as known.

Salje et al. (2020) estimate 2.9 percent, using a model-driven approach. All estimates

imply that our upper bound is too low by, at most, 7.5 (1/.93) percent (we emphasize:

percent, not percentage point). As our upper bound is usually less than 5 percent, we are

left with a bias of, at most, .4 percentage points.
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Figure E.1: Estimate ICLI-related hospitalizations as a share of the population, by week
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Notes: Figure plots, for each week, two estimates of the share of the population of Indiana admitted for
an ICLI-related hospitalization. Not all hospitals report diagnosis information, so the upper bound as-
sumes hospitalizations are ICLI-related if the diagnosis information is unreported. The “based on observed
diagnosis” line assumes that the share of ICLI-related hospitalizations among the hospitals with missing
diagnosis information is equal to their share among the hospitals with reported information.
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F Inference and age adjustment details

F.1 Inference for Intersection Bounds

The sample analogue estimators we use to construct the test monotonicity, hospital

monotonicity, and hospital independence bounds reported in the paper are all asymptot-

ically consistent. However, the hospital monotonicity and hospital independence bounds

are examples of “intersection bounds”. The sample analogue estimators are asymptoti-

cally consistent but their sampling distribution is somewhat complicated and the point

estimates may include finite sample bias because the minimum and maximum operators

are non-linear.

To understand the finite sample bias of the intersection bounds, consider the upper

bound on population prevalence under under test monotonicity and hospital monotonic-

ity:

UmH = min {Pr(C = 1|D = 1), P r(C = 1|D = 1, H = 1)}

= min {Population test positivity,Hospitalized test positivity} .

We estimate this bound by using the sample analogs of Pr(C = 1|D = 1) and Pr(C =

1|D = 1, H = 1), say P̂ (C = 1|D = 1) and P̂ (C = 1|D = 1, H = 1). Because the minimum

operator is not linear, E[UmH ] is not equal to the minimum of the two expectations. Sup-

pose for illustration that, in the population, Pr(C = 1|D = 1, H = 1) < Pr(C = 1|D = 1),

so that the hospital test positivity binds. In that case, finite sample bias may arise because

in any given random sample, there is a positive probability that P̂ (C = 1|D = 1) < P̂ (C =
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1|D = 1, H = 1). But if this probability is small, then so is the bias.

We using the bootstrap method described in Manski and Pepper (2009); Kreider and

Pepper (2007) to estimate confidence intervals for the test monotonicity, hospital mono-

tonicity, and hospital independence bounds and to assess concerns about finite sample

bias in the hospital monotonicity and hospital independence bounds.

We use 500 bootstrap simulations. In each bootstrap replication we formed each set of

bounds. We used percentiles of the bootstrap distribution of the upper and lower bounds

to form a 95 percent confidence interval around the identified set. The lower bound of the

95 percent confidence interval is the 2.5th percentile of the bootstrapped lower bounds,

and the upper bound of the 95 percent confidence interval is the 97.5th percentile of the

upper bounds.

We also used the bootstrap to estimate the degree of finite sample bias associated with

the hospital monotonicity and hospital independence bounds. We estimate the finite sam-

ple bias as the difference between the average estimate in the bootstrap sample and the

actual point estimate in the full sample. Table F.1 shows bootstrap estimates of the bias

in the upper bound under test monotonicity and hospitalization monotonicity applied to

the non-ICLI hospitalized population. The bootstrap results suggest that the finite sample

bias is negligible in our application. The estimated bias is less than 1 percent (not percent-

age point) in most weeks. It makes sense that the bias is small because the sample size in

our analysis is very large, and also because there is such a large gap between population

test positivity and hospitalized test positivity. The results is that there is a low probabil-

ity across bootstraps that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H = 1). We show this

probability week-by-week in Figure F.1. In the first month of the sample there is a non
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trivial probability – 10-30% – that the inequality does not hold in a given random sample.

After mid-April, however, this probability becomes essentially zero in every week. Ac-

cordingly, finite sample bias is not an important worry in our application and we do not

attempt to correct our point estimates or confidence intervals for finite sample bias.

F.2 Age Adjustment

Because the tested and hospitalized samples are not age representative of the general

population, throughout the paper, we report both unadjusted results and age-standardized

upper and lower bounds. This simply means that we stratify the data six age groups ( 0-

17, 18-30, 30-50, 50-64, 65-74, and 75 and older) and then compute the upper and lower

bounds within each age-strata. Afterwards, we average the age group specific bounds

by weighting each age-specific bound by that age group’s share of the Indiana popula-

tion. We construct confidence intervals for the age-adjusted bounds using the bootstrap;

in each bootstrap iteration we calculate the age-adjusted bound or intersection bound (as

appropriate), and our confidence intervals for the bound are the 2.5th percentile of the

lower bound confidence interval and the 97.5th percentile of the upper bound confidence

interval.
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Table F.1: Small bias in intersection bounds
Upper bound Bias Bias/bound

mean 0.044 -0.000 -0.003
min 0.011 -0.005 -0.037
p25 0.020 -0.000 -0.009
p50 0.031 -0.000 -0.002
p75 0.053 0.000 0.004
max 0.159 0.001 0.016

Notes: Table reports statistics on the estimated upper bound (under test monotonicity and hospitalization
monotonicity applied to the non-ICLI hospitalization), the bias in the upper bound, and the ratio of the bias
to the bound. These statistics vary across weeks in the sample. All bounds are age-adjusted. We estimate
the bias as the difference between the average estimate in the bootstrap samples and the actual estimate.
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Figure F.1: Estimated probability that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H = 1), by
week
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Notes: Figure shows the estimated probability, for each week, that P̂ (C = 1|D = 1) < P̂ (C = 1|D = 1, H =
1), estimated using a bootstrap. All bounds are age-adjusted.
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G Validity Tests

Our main results show that the test monotonicity bounds on prevalence are much

tighter for the non-ICLI hospitalized population than for the population as a whole. These

tighter bounds are informative for general population prevalence only under additional

assumptions about hospital representativeness, either a monotonicity assumption or an

equal prevalence assumption. How valid are these assumptions? Assessing them directly

is of course impossible because we lack data on prevalence in the population as a whole

or in the hospital sample.

Our main analysis provides one type of indirect evidence in support of our hospital

representativeness assumptions. The non-ICLI and clear-cause samples generate simi-

lar bounds, and, within the clear-cause sample, there are not large differences in bounds

across different causes of admission. This suggests that prevalence does not vary with the

exact set of hospitalizations studied, although of course this does not prove hospitaliza-

tion monotonicity or hospitalization independence are credible assumptions.

In this section, we provide two additional pieces of evidence on the hospital IV as-

sumptions. First we show that the hospital bounds are consistent with the estimates of

population prevalence from the Indiana COVID-19 Random Sample Study (Menachemi

et al., 2020; Richard M. Fairbanks School of Public Health, 2020).14 Second, we compare

the hospital sample to the general population in terms of their likelihood of prior testing

(prior to the hospital data) and the test rate of their home counties. We take these to be

proxies for their concern about COVID, although other interpretations are possible.

14 Our data do not contain the test results from the Random Sample Study, so we compare our bounds to
the published results.
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G.1 Comparison to random sample testing

A valuable benchmark for the hospital-based prevalence bounds comes from a large-

scale study of SARS-CoV-2 prevalence in Indiana. The study invited a representative

sample of Indiana residents (aged 12 and older) to obtain a SARS-CoV-2 test. The first

wave of the study took place April 25-29, and the second wave took place June 3-7. The

preliminary results are reported in Menachemi et al. (2020) and Richard M. Fairbanks

School of Public Health (2020). The response rate was roughly 25 percent, and no attempt

was made to correct for non-random response. Nonetheless this survey appears to be

the best benchmark available. We report the point estimates for prevalence (assuming

random nonresponse) and their confidence intervals in the top panel of Table G.1. The

first wave estimates 1.7 percent prevalence and the second 0.5 percent.15

We compare our prevalence bound during the weeks containing the random sample

survey, in the bottom panel of the table. Using population testing we obtain very wide

bounds that contain the random sample study estimates. This fact provides some support

for the test monotonicity assumption. Under our hospital representativeness assump-

tions, the bounds are tighter, especially in June. Our bounds under hospital monotonicity

always contain the random sample study point etimates. Under hospital independence,

the point estimate lies slightly below the lower bound. However the 95% confidence in-

terval always overlap. Thus for both dates the prevalence point estimates are consistent

with the bounds we obtain under our hospital representativeness assumptions.

15 The estimates in Table G.1 are slightly different from those reported by Richard M. Fairbanks School of
Public Health (2020). We report updated calculations, based on correspondence with the authors.
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Table G.1: Do our bounds contain estimates of prevalence from random-sample testing?

Time period April 25-29 June 3 -7

Random Sample Study
Prevalence estimates 0.0170 0.005
95% confidence interval (0.011, 0.025) (0.002, 0.013)

Bounds from...
Population testing [0.0008, 0.137] [0.0006, 0.059]

(0.0008, 0.142) (0.0006, 0.061)

(0.0008, 0.001) (0.0006, 0.001)
Non-ICLI hospitalizations (H-M) [0.0008, 0.086] [0.0006, 0.022]

(0.0008, 0.119) (0.0006, 0.028)

(0.0008, 0.118) (0.0006, 0.028)
Non-ICLI hospitalizations (H-I) [0.0182, 0.086] [0.0073, 0.022]

(0.0142, 0.119) (0.0055, 0.028)

(-0.0551, 0.118) (-0.0087, 0.028)
Clear cause hospitalizations (H-M) [0.0008, 0.057] [0.0006, 0.021]

(0.0008, 0.088) (0.0006, 0.035)

(0.0008, 0.088) (0.0006, 0.035)
Cause hospitalizations (H-I) [0.0108, 0.057] [0.0064, 0.021]

(0.0058, 0.088) (0.0023, 0.035)

(-0.0407, 0.088) (-0.0117, 0.035)

Notes: The first two rows of the table report the estimated population prevalence and 95% confidence inter-
val from the Indiana COVID-19 Random Sample Study, conducted over the indicated dates, which assumes
random nonresponse (Menachemi et al., 2020; Richard M. Fairbanks School of Public Health, 2020). The
remaining rows report the (age-adjusted) bounds on prevalence, in brackets, with 95-percent confidence
intervals, in parentheses, from our different samples, under test monontonicity, as well as hospital mono-
tonicity (H-M) or hospital independnence (H-I) as indicated, for the week containing the random sample
study period.
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G.2 Comparison of prior testing and community testing

A standard way of measuring representativeness is to compare the distribution of

covariates in a study population to their distribution in the target population. In our

case, this approach is most convincing if we have well-measured covariates that proxy

for SARS-CoV-2 infection risk. Two candidate covariates are the community SARS-CoV-2

testing rate and the prior testing rate. The idea behind these proxies is that people who

come from areas with high test rates, or who have been tested in the past, may themselves

have a higher current likelihood of being infected with the virus.

To operationalize these measures, we define the community testing rate for person i as

the fraction of people in i’s county who have ever been tested, as of the end of our sample

period. We define the prior test rate of person i as of date t as the probability that i was

tested at least once during the week-long period [t− 15, t− 9]. We focus on this window

because it is the second week prior to our hospital testing window (which runs from

t − 2 to t + 4 for a patient admitted at t). We allow for a week of time to elapse between

the hospitalization and the “prior” testing because it is possible that some pre-hospital

testing would occur in the window [t − 8, t − 3]. When studying prior tests, we limit the

sample to each person’s first hospitalization after March 1, 2020, to avoid picking up the

higher testing that mechanically results from the fact that people hospitalized once are

more likely than the general population to have been previously hospitalized. As with

our bounds, we weight the data to match the population age distribution.

Table G.2 shows the community testing rate. The average county in Indiana has a

testing rate of 25%, with an interquartile range of 22% to 28%. The average person lives
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Table G.2: Hospitalized patients are not drawn from counties with high test rates

County test rate

Average 0.252
25th percentile 0.219
75th percentile 0.280

Population
Average person .267

Hospitalizations
Non-ICLI .266

[20.8]
Clear cause .265

[16.9]
ICLI .267

[2.5]

Notes: The county test rate is the share of the county population tested at least once in our test data.
Table reports county-level statistics, as well as the average county test rates for the general population, the
non-ICLI hospitalizations, clear cause hospitalizations, and ICLI hospitalizations, as well as t-statistic (in
brackets) for the null hypothesis that the average person and the average hospitalization have the same
county test rate.

in a county with a test rate of 26.7%. The average non-ICLI hospitalized patient comes

from a county with a test rate of 26.6%, and the average clear-cause hospitalization pa-

tient comes from a county with a test rate of 26.5%. Among ICLI hospitalizations it is

26.7%. Our sample size is large enough that these differences are all statistically signifi-

cant. Practically, however, the differences are very small. Hospitalized patients appear to

come from counties that are roughly representative in terms of their testing rates. These

rates are all significantly different from the population average.

Figure G.1 shows the prior testing rate as a function of admission date for the non-ICLI

hospitalization sample, the clear-cause hospitalization sample, and the general popula-

tion (for which the prior test rate on day t is defined as the fraction tested between t− 15
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Figure G.1: Prior test rates, population and hospitalization samples
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Notes: The prior test rate is the fraction of the group at date t that was tested between t − 15 and t − 9.
Figure plots the average prior test rate for the population, for non-ICLI hospitalizations (in the left panel)
and for clear cause hospitalizations (right panel). The shaded area is the 95% confidence interval for each
week and hospitalization sample.

and t − 9). The rates in the hospitalization samples are initially close to the population

rate (when testing is low in general), but the lines diverge. By the last week of the sample,

the prior testing rate is 1-2 percentage points lower in the hospitalization samples, than in

the population. Although the differences in weekly testing rates are not statistically sig-

nificant, the lower prior testing rate in the hospital sample could indicate that the hospital

sample is negatively selected on SARS-CoV-2 infection risk.
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